
AD-AIO? 257 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB O F/6 9/2
STATISTICAL NETHODOOGY FOR CONSTRUCTING SYNTHETIC TEST WOREKL-TC(U)

MAY 79 W T GRAYKAL
UNCLASSIFIED AFiT¢CI79-305D-S NL

Sllfllllll lull.

,limmmmmmm*uuuuuuul--..A
A! fllllfffflllf

* li 1 4. f118 12.5
2 132.

1.1l 112.0

,. ,. ~IIII,__o ,_

1111IL25 flf.J 4 1.16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU Of SIANDARDS }963 A

5ECUNI IV CL AtIF ICAI i0N OF Tit IS PAU4 IN~. iu ,.,i

REPORT DOCUMENTATION PAGE I.,' Al, IN',jl(I

REPO N UMBER l-. 3u ll 111111,1- 1 , t."i t ,i

PA ------ il 1.1 I-viHi

SyntatstialMethodology for Constructing' jAS/01IRJATION
Sythti Tes Workloads~4h ~l i N.~i

UTF4OR(s) - 8 C jNTNAC TON (,RANT NuMUjLN',,

9 PERFORMING pNGANIZA I ION N -AMU A NO ADDR ESS 0f(,HA1,1ttfPRJC--T''

C AFIT STUDENT AT: Texas A&M Univ

WPAFB OH 45433 /& uSR FPG

1.IA I-f6OiFNG AGFNCYA CA ADD OESV15 L S (u

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repourt)

APPROVED FOR PUBLIC RELEASE; DSRRIIN NIIE

17. DISTRIBUTION STATEMENT (of Cho Abstract entered in Block 20, itf different irom, Report)

10, SUPPLEMENTARY NOTES w-ERI C.pii1- 0 ~
APPROVED FOR PUBLIC RELEASE: lAW AFR 190-17 Director of Pui jj0 abjAir Force Insi

bightpatter ut~Je of Tech 01o., rc
19. KEY WORDS (Continue on reverse aide It necesary arid identify by block number) rsn vn,~ 45433

0. 20. ABSTRACT (Continue ore reverse side it necessary and identify by block ntimber)

C.~) ATTACHED

DD 173 EDITION OF I NOV 65 1s OBSOLETE UNCLASS
stt. RTV CLAbSSIFICATIO OFTeS PAG6E DCu,,ate t.e.j

81 ii03 040

4 '4 p

~ABSTRACT

A Statistical Methodology for

Constructing Synthetic Test Workloads (May 1979)

Wayne Thomas Graybeal, B.S., University of Oklahoma

M.A., University of Arizona

Chairman of Advisory Commnittee: Dr. Udo W. Pooch

Computer performance measurement and evaluation (CPME) studies

are conducted for the purpose of sizing and selecting a new system

(selection studies); during the design phase of either a new system or

a hardware/software modification to an existing system to assess the

impact of the new system/modification (performance projection studies);

or to assess and improve the level of performance of an existing

system (performance monitoring studies). Nearly all performance mea-

sures used are related to the workload being processed by the system.

There is the need f,' a workload which emulates the actual workload,

yet executes in less time and does not compromise the adequacy of

the measurements. Such a workload is called a drive or test workload.

• A statistical methodology is proposed to aid in the construction

of a test workload. The major elements ofthismethodology are

(a) selecting'te workload subset by constructing an overall

workload profile and th i choosing a period which exhibits character-

istics pertinent to the evaluation study,

____________- I3

iv

(b) choosing a set of descriptor variables which is detailed

enough to represent the demand placed upon the major system resources,

but is not so detailed as to complicate later stages of the analysis,

(c) collecting data reflecting the values of the descriptor

variables for the worksteps in the selected subset,

(d) scaling the resource demand matrix so that each descriptor

has mean 0 and variance 1,

(e) applying principal components analysis to the scaled resource

demand matrix and retaining only those components needed to explain the

major part of the variability in the data,

(f) clustering the transformed resource demand vectors in the

principal components space using a non-hierarchical clustering algo-

rithm with a weighted Euclidean distance measure,

(g) designing synthetic jobs for each of the isolated clusters

using regression analysis to obtain predictor equations for the param-

eter settings,

(h) forming a synthetic job mix by combining a sufficient number

of copies of the various synthetic jobs with appropriate parameter

settings and the desired arrival time of each, and

(i) validating the generated synthetic job mix by executing it

on the system being studied, comparing its resource demand character-

istics with those of the real subset, and adjusting the parameter set-

tings as necessary.

A detailed case study of the workload processed by the Amdahl

470/V6 at Texas A&M University is presented Illustrating many of the

proposed techniques. Suggestions for further work are included.

_________________ ~..ail X

A STATISTICAL METHODOLOGY FOR

CONSTRUCTING SYNTHETIC TEST WORKLOADS

A Dissertation

by

WAYNE THOMAS GRAYBEAL

Submitted to the Graduate College of
Texas A&M University

in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

May 1979

Major Subject: Computing Science

4 rI 2

A STATISTICAL METHODOLOGY FOR

CONSTRUCTING SYNTHETIC TEST WORKLOADS

A Dissertation

by

WAYNE THOMAS GRAYBEAL

Submitted to the Graduate College of
Texas A&M University

in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

May 1979

Major Subject: Computing Science

-Y

A STATISTICAL METHODOLOGY FOR

CONSTRUCTING SYNTHETIC TEST WORKLOADS

A Dissertation

by

WAYNE THOMAS GRAYBEAL

Approved as to style and content by:

(Chairm~an of Commuittee)

(Memnber)

(Member) (Head of Department)

May 1979

iii

ABSTRACT

A Statistical Methodology for

Constructing Synthetic Test Workloads (May 1979)

Wayne Thomas Graybeal, B.S., University of Oklahoma

M.A., University of Arizona

Chairman of Advisory Committee: Dr. Udo W. Pooch

Computer performance measurement and evaluation (CPME) studies

are conducted for the purpose of sizing and selecting a new system

(selection studies); during the design phase of either a new system or

a hardware/software modification to an existing system to assess the

impact of the new system/modification (performance projection studies);

or to assess and improve the level of performance of an existing

system (performance monitoring studies). Nearly all performance mea-

sures used are related to the workload being processed by the system.

There is the need for a workload which emulates the actual workload,

yet executes in less time and does not compromise the adequacy of

the measurements. Such a workload is called a drive or test workload.

A statistical methodology is proposed to aid in the construction

of a test workload. The major elements of this methodology are

(a) selecting the workload subset by constructing an overall

workload profile and then choosing a period which exhibits character-

istics pertinent to the evaluation study,

1A&

4 7.. .. -

iv

(b) choosing a set of descriptor variables which is detailed

enough to represent the demand placed upon the major system resources,

but is not so detailed as to complicate later stages of the analysis,

(c) collecting data reflecting the values of the descriptor

variables for the worksteps in the selected subset,

(d) scaling the resource demand matrix so that each descriptor

has mean 0 and variance 1,

(e) applying principal components analysis to the scaled resource

demand matrix and retaining only those components needed to explain the

major part of the variability in the data,

(f) clustering the transformed resource demand vectors in the

principal components space using a non-hierarchical clustering algo-

rithm with a weighted Euclidean distance measure,

(g) designing synthetic jobs for each of the isolated clusters

using regression analysis to obtain predictor equations for the param-
eter settings,

(h) forming a synthetic job mix by combining a sufficient number

of copies of the various synthetic jobs with appropriate parameter

settings and the desired arrival time of each, and

(i) validating the generated synthetic job mix by executing it

on the system being studied, comparing its resource demand character-

istics with those of the real subset, and adjusting the parameter set-

tings as necessary.

A detailed case study of the workload processed by the Amdahl

470/V6 at Texas A&M University is presented illustrating many of the

proposed techniques. Suggestions for further work are included.

v

ACKNOWLEDGEMENT

The author's graduate studies were funded by the United States

Air Force through a program administered by the Air Force Institute of

Technology (AFIT), Wright-Patterson AFB, Ohio.

Deepest gratitude is extended to Dr. Udo W. Pooch, Chairman of

the author's Graduate Advisory Committee. Dr. Pooch provided immeasur-

able assistance in defining and conducting this research.

Appreciation is also extended to Dr. Dan D. Drew, Computing

Science, Dr. Glen N. Williams, Computing Science, Dr. Larry J. Ringer,

Statistics, and Dr. Morgan 0. Reynolds, members of the Advisory Com-

mittee.

Successful completion of this research would not have been possi-

ble without access to "real-world" resource utilization data. The

assistance of Dr. Dick B. Simmons, Director of the Data Processing

Center, Texas A&M University, and his staff in this regard is grate-

fully acknowledged.

A very special note of gratitude is extended to the author's

wife, Annie. Without her extraordinary patience and diligence in

typing the manuscript, the project could not have been completed.

vi

TABLE OF CONTENTS

Page

ABSTRACT................

ACKNOWLEDGEMENT.......

TABLE OF CONTENTS. vi

LIST OF TABLES. ix

LIST OF FIGURES. x

CHAPTER

I. INTRODUCTION

1.1 Background. 1

1.2 Types of Evaluation Studies 2

1.3 Evaluation Techniques 4

1.4 Performance Measures. 6

1.5 Means of Measurement. 8

1.6 Influence of Workload on System Performance 10

1.7 Properties of Test Workloads 11

1.8 Dissertation Topic 13

1.9 Dissertation Contents 14

II. LITERATURE SURVEY. 16

2.1 Introduction. 16

2.2 Selection of the Workload 17

2.3 Characterization of the Workload. 18

vii

Page

2.4 Types of Test Workloads22

2.5 Validation of Test Workloads 26

2.6 Summary26

III. SELECTING THE WORKLOAD 28

3.1 Introduction . 2-

3.2 Constructing a Workload Model 29

3.3 Environmental Impact on Resource Demands 30

3.4 Selection of an Appropriate Workload Subset 33

3.5 Selecting Descriptors for the Worksteps 35

3.6 Collecting Data for Construction of the Test Workload . 38

3.7 Summary39

IV. ANALYZING THE WORKLOAD41

4.1 Introduction41

4.2 Scaling the Descriptor Values42

4.3 Accounting for Correlation Among Variables 44

4.4 Reducing the Dimension of the Feature Space 48

4.5 Clustering Algorithms 51

4.6 Summary 57

V. CONSTRUCTING THE TEST WORKLOAD 59

5.1 Introduction 59

5.2 General Considerations in the Design of Synthetic Jobs . 60

5.3 Parameterization of Synthetic Jobs63

5.4 Controlling the Demand for System Resources 65

viii

Page

5.5 The Design of Calibration Experiments. 68

5.6 Validating the Test Workload 71

5.7 Summary. 73

VI. CASE STUDY.74

6.1 Introduction. 74

6.2 System Description 75

6.3 Workload Description.78

6.4 Analysis of Autobatch Data 83

6.5 Analysis of Batch Jobs. 91

6.6 Comparison of Clustering Results 102

6.7 Construction of Synthetic Jobs 107

6.8 Summary 113

VII. SUMMARY AND CONCLUSIONS. 116

7.1 Review of the Proposed Methodology 116

7.2 Automatic Generation of Test Workloads. 117

7.3 Major Points Originated by the Research121

7.4 Suggested Areas for Future Research 122

7.5 Conclusions. 123

REFERENCES. 124

APPENDIX A. 131

APPENDIX B. 134

APPENDIX C. 149

APPENDIX D. 156

VITA 163

ix

LIST OF TABLES

Table Page

6.1 Resource Demand Characteristics - Autobatch 84

6.2 Correlation Matrix - Autobatch 85

6.3 Principal Components for Autobatch Data 85

6.4 Intercorrelations Among Variables - Autobatch 86

6.5 Cluster Compositions - Autobatch 91

6.6 Resource Demand Characteristics - Batch 93

6.7 Correlation Matrix - Batch 94

6.8 Principal Components for Batch Data 94

6.9 Intercorrelations Among Variables - Batch 95

6.10 Cluster Compositions - Batch 103

6.11 Cluster Standard Deviations - Wi = 1 104

6.12 Cluster Standard Deviations - W = l/X 105

6.13 Cluster Standard Deviations - Wi = 0i 05

6.14 Parameter Settings - Autobatch 109

6.15 Resource Demands - Synthetic Autobatch Job 109

6.16 Parameter Settings - Batch 111

6.17 Resource Demands - Synthetic Batch Job 112

C.l Type 4 (Step End) Record [47] 152

C.2 Type 5 (Job Termination) Record [47) 153

C.3 Type 26 (HASP Purge) Record [47]. 154

x

LIST OF FIGURES

Figure Page

4.1 The Effect of Correlated Variables 45

4.2 Principal Components for n = 247

4.3 Application of an Unweighted Euclidean Distance Measure 54

4.4 Effect of Improper Weighting56

4.5 Effect of Proper Weighting 57

6.1 Relative Frequency Histogram for Worksteps Processed - Monthly . 79

6.2 Relative Frequency Histogram for CPU Time - Monthly 79

6.3 Relative Frequency Histogram for Worksteps Processed - Weekly . 81

6.4 Relative Frequency Histogram for CPU Time - Weekly 81

6.5 Interarrival Distribution - Autobatch 84

6.6 Plot of Cluster "Tightness" - Autobatch 87

6.7 Kiviat Graph for Cluster 1 - Autobatch 88

6.8 Kiviat Graph for Cluster 2 - Autobatch 88

6.9 Kiviat Graph for Cluster 3 - Autobatch 89

6.10 Kiviat Graph for Cluster 4 - Autobatch 89

6.11 Kiviat Graph for Cluster 5 - Autobatch 90

6.12 Interarrival Distribution - Batch 93

6.13 Plot of Cluster "Tightness" - Batch 96

6.14 Kiviat Graph for Cluster 1 - Batch 97

6.15 Kiviat Graph for Cluster 2 - Batch 97

6.16 Kiviat Graph for Cluster 3 - Batch 98

xi

Figure Page

6.17 Kiviat Graph for Cluster 4 - Batch98

6.18 Kiviat Graph for Cluster 5 - Batch99

6.19 Kiviat Graph for Cluster 6 - Batch99

6.20 Kiviat Graph for Cluster 7 - Batch 100

6.21 Kiviat Graph for Cluster 8 - Batch 100

6.22 Kiviat Graph for Cluster 9 - Batch 101

6.23 Kiviat Graph for Cluster 10 - Batch 101

7.1 Automatic Benchmark Generator 120

B.1 Logical Program Linkages 135

B.2 Clustering Algorithm - Program Listings 137

D.1 Program Listing for Autobatch Synthetic Job 158

D.2 Program Listing for Batch Synthetic Job 159

-.,,

CHAPTER I

INTRODUCTION

1.1 Background

The development of the electronic digital computer, begun in the

late 1940's and continuing until the present time, has had a dramatic

effect on nearly every field of human endeavor. Rapid advances in both

hardware and software have exceeded even the most ambitious projections.

With each advance in hardware and/or software came another level of

complexity. This led to the ultra-fast, highly sophisticated systems

of today in which the synergistic effects of their combined hardware

and software subsystems can yield performance which is surprising even

to the system designer. It has been suggested [78] that these systems

are too complicated for the problems they are intended to solve, and

that their complexity makes them inherently inefficient. The degree of

truth in these suggestions may be debated, however it is apparent that

the computer has evolved into one of the most complicated systems

yet devised by man.

The Communications of the Association for Computing Machinery is
used as a pattern for format and style.

i j

2

Computer Performance Measurement and Evaluation (CPME) is a term

coined to refer to a loosely-defined branch of computer science. It

has evolved to satisfy the need for understanding and predicting the

performance of computer systems. As the name implies, there are two

different aspects to the study of the performance of a computer system.

The first is measurement, the act of ascertaining the extent of the

performance. The second is evaluation, the act of examining or judging

the value of performance [29]. This field is not a new one [20], how-

ever, recent technical advances in hardware and a rethinking of the

problem have led to a broadening of scope. While the early researchers

were concerned with only the performance of the hardware [64], the

performance of a given computer system has been realized to be a

function of the total hardware/software package. Thus, such seemingly

unrelated areas as program behavior [85], computational complexity [6]

and software engineering [38] have been recognized as having an impact

on the performance of computer systems.

1.2 Types of Evaluation Studies

The development, acquisition and maintenance of a computer

system is an expensive proposition. Unfortunately, an efficient and

an effective system appears to be the exception rather than the rule

[56]. Thus, there is a continuing interest, both on the part of man-

agement as well as system analysts, in the understanding and in the

improving of the performance of computer systems.

Lucas [64] classified evaluation studies by the reasons for which

3

they are conducted. Selection evaluation studies are conducted for the

purpose of sizing and selecting a new system. This type of evaluation

assumes that the relative performance in accomplishing a certain task is

a factor in choosing one system over another system. Performance

projection studies, on the other hand, are conducted during the design

phase of either a new system or a hardware/software modification to an

existing system. The aim of such a study is to assess the impact that

certain features of the new system or subsystem will have on the

system's performance. Such an evaluation is handicapped in most cases

by the lack of a prototype. The results obtained are therefore

largely theoretical and subject to validation once the system or

subsystem design is implemented. The third type of evaluation is

termed performance monitoring. This type of study has as its aim the

assessment and improvement of the level of performance of current

systems. Results of this type of evaluation can be used to "tune" a

system, thus attaining a higher level of efficiency; to establish a

profile of system activity in order to apply priority algorithms and

establish billing procedures; or to forecast the impact of a proposed

change in either the system or the workload.

There appears to be a degree of commonality in both purpose and

technique in the classifications proposed by Lucas[64]. On the other

hand, a more meaningful classification might be one proposed by

Svobodova [88]. A study which is conducted to assess the performance

of one system relative to another is called a comparative evaluation.

4

A study that is conducted to evaluate the system's performance relative

to system parameters and/or system workload is termed an analytical

evaluation.

1.3 Evaluation Techniques

Three general techniques have emerged in the evaluation of

computer systems: analytical, simulation, and empirical [39]. The

technique to use is affected by such factors as why the study is

being conducted, the level of detail needed in the study, and the

availability of the system being studied.

Analytical techniques are characterized by the representation of

the system in the form of a mathematical model, and the solution tech-

niques using ordinary mathematical means. Probably the most common

mathematical model of a computer system is that of a queuing system

[10,17,19,21,27,37,77]. In this representation, the system or sub-

system being studied is considered as a service facility. Jobs or

tasks are considered as customers arriving to the service facility

requiring some quantity of service [40,58]. There are a number of

disadvantages to using analytical techniques in an evaluation study.

First, a mathematical model which is detailed enough to accurately

represent today's highly complex computer system is likely to be

mathematically intractable. Second, in an effort to make the model

solvable, the researcher may be required to make a number of assump-

tions. For example, if a queuing model is used, it is common to assume

that the interarrival times are independent and that the system has

achieved a stochastic balance (steady state) [40,88]. The validity

5

of such assumptions can certainly be questioned in many studies.

A third disadvantage is that even if the system is accurately represen-

ted and the assumptions deemed valid, the researcher has the problem

of estimating system parameters. For these reasons, analytical tech-

niques have found little utility in full-scale performance evaluation

studies. They have, however, been used in studies involving subsystems

or particular aspects of a system's behavior such as CPU scheduling

[57,68], and the management of I/O channels [34,84].

The second general technique used in evaluation studies is simu-la-

tion. In this technique, the structure of the system is reflected in

a computer program. The behavior of the system under particular condi-

tions can then be studied byvaryingtheparameters of the simulator. This

technique avoids the problem of intractability encountered in analytic

methods, and generally does not require the researcher to make as many

assumptions. There are, however, problems with this technique as well.

If a high degree of detail is required in the system model, the simula-

tor can become quite expensive to develop and to use. Furthermore,

to be a useful tool, the simulator must be validated. That is, it must

be demonstrated that the simulator behaves in the same manner as the

real system when presented with identical conditions. Often this aspect

of the simulation study is neglected [39], which leads to questionable

interpretation of any results. There are many examples in the litera-

ture [60,61] of full scale system simulations.

The third general category of evaluation techniques involves

studies made through the observation of some real system (empirical

__ _ _ ____

6

analysis). This generally entails the collection and analysis of data

reflecting the system's performance. Much data is collected through

accounting logs and other means at every computer installation. It

has only been recently that a serious attempt has been made at analy-

zing this data. Empirical techniques, aside from their utility in

conducting separate evaluation studies, also provide a means of vali-

dating results obtained from an analytical or simulation study [39].

Problems encountered in using empirical techniques include the unavail-

ability of the system and the degradation of system performance because

of the monitoring orocess.

1.4 Perfo.rmance Measures

In the past, the relative performance capability of a computer

systen, was jvjged by such hardware characteristics as CPU cycle time,

memory access time and the time needed to execute particular operations

(i.e. add) [64,68]. It was thought that the shorter these times were,

the more "powerful" the system was and hence the higher its performance

rating. In later years, especially with multiprogrammed systems, it has

become apparent that, although important, these measures are generally

inadequate in characterizing the performance of a given system. Many

other "performance measures" have been developed and are considered to be
more useful in assessing performance. Some of the more popular of these

measures are detailed below. Fora more complete list, see Svobodova [88].

One of the more common measures of the performance of a computer

system is throughput. Throughput is defined to be the amount of useful

work completed per unit time when executing a given workload [9,56,88].

_-: -, -7 1:- r 7 7

7

Since throughput is generally used in comparative evaluation studies, a

related measure, relative throughput, has been developed. The relative

throughput is defined as the ratio of the elapsed time required to

process a given workload on one system versus the time required to

process the same identical workload on another system [29,41,88]. Still

another related measure is the throughput rate, defined to be the aver-

age number of task completions per unit time [75].

With the advent of multiprogrammed systems, a number of measures

were developed to assess the performance of these systems relative to

monoprogrammed systems. One of these is the Elapsed Time Multiprogram-

ming Factor (ETMF) which is defined [82,88] as the ratio of the turn-

around time of a job in a multiprogrammed environment to the turnaround

time when it is the only job in the system. Another related measure is

the gain factor C88] which is the total system time needed to execute a

set of jobs in a multiprogrammed environment to the total system time

needed to execute the same set of jobs serially. Still another measure

related to multiprogramming is the internal delay time [88], which is

the ratio of processing time of a job in a multiprogramming environment

to the time required when it is the only job in the system.

Other advances in software and hardware necessitated more measures

of a system's performance. For example, virtual memory systems neces-

sitated a measure of the behavior of page and segment replacement rules.

Page (segment) fault rate [23,88J is the most frequently used measure of

this performance.

~. . -

8

1.5 Means of Measurement

An empirical performance evaluation study requires that data be

collected on the system activity. There are a number of ways this data

can be collected. The simplest way [75] is through a simple observation

of the system utilizing the system console and the behavior of I/O

units as an indication of system performance. The type of information

which could be gained through this type of observation would appear to

be severely limited. Another source of information on the behavior of

the system is from the system accounting logs . These logs can be used to

obtain information on resource utilization at a job or job-step level.

A third source is utilizing a monitor. There are three general types

of monitors available: hardware, software and hybrid.

A hardware monitor [15,75] is logically and physically distinct

from the system being monitored. System activity is routed to the

monitor through a series of probes. For instance, the period of time

a processor spends in the WAIT state could be monitored by installing

a probe on theline leading to the WAIT light on the system console.

Hardware monitors, though they can be used to measure essentially

any event, are limited in that they cannot give an indication as to

the cause of the event.

An alternative to the hardware monitor is the software monitor.

Software monitors are programs which reside on the system being moni-

tored. There are two general types of software monitors. The first,

the interrupt-intercept monitor [75] is activated whenever an event

which causes an interrupt occurs. Rather than control being passed

99

directly to the interrupt handler, it is instead routed to the monitor

which records the system state and then passes control to the appropri-

ate interrupt handler. The second type, the sampling monitor, is acti-

vated at certain time intervals, at which time it records the system

state. Regardless of which type of software monitor is used, there is

a serious drawback. That is since the monitor is resident in the host

system, it competes for system resources along with normal jobs. Thus,

the use of a software monitor can degrade system performance through

the introduction of additional system overhead. This degradation has

been termed the "artifact" of using a software monitor. This artifact

can be a serious problem in evaluation studies, since the results

obtained on system activity are biased to some degree.

In an effort to minimize the disadvantages of pure hardware and

software monitors, the hybrid monitor has been developed. The hybrid

monitor is essentially a combination of the two previous approaches.

A minicomputer is normally attached as an "intelligent" terminal to the

host computer. Hardware probes are used to detect event occurrences,

just as in the pure hardware approach. In addition, the hybrid monitor

has the ability to interrupt the host system and cause status informa-

tion to be sent to it. Thus, a hybrid monitor can link event occur-

rences to their causes, which pure hardware monitors cannot. Further,

since the required software support within the host system is limited,

the software monitor artifact is reduced. This approach to monitoring

appears to be the most promising.

* - -

10

1.6 Influence of Workload on System Performance

Nearly all of the performance measures mentioned earlier related

the performance of a system to a particular workload. It has long been

recognized [13] that the choice of the workload will have a major

impact on the observed performance. For example, if one of the aspects

of system performance that is being studied is the percent of channel

utilization, an 1/0 bound workload would provide entirely different

results from that of a compute-bound workload.

The workload (jobload) of a computer system is defined [75] as the

set of all programs, data, and commands that are submitted to the

system for subsequent execution. Since a workload has such a dramatic

effect on the performance of a given computer system, the problem of

how to represent or characterize the workload has arisen in practically

every computer system evaluation study undertaken [32]. In many cases,

workload characterization is the hardest technical problem to solve

for the investigator [32]. There are many reasons for this, the chief

one being the nonrecurrent nature of a computer workload. That is, if

a system is handling a repetitive workload in which the same set of

requests are made cyclically, then the workload characterization

problem could be solved simply by examining the set of requests made in

one cycle. Unfortunately, in most cases the workload is not repetitive,

hence no general model can be developed.

Executing the entire job profile on each potential computer system

that is to be eval uated can be expensive and time consuming . Thus, there

is the need for a workload which emulates the actual workload, yet

11

executes in less time and does not compromise the adequacy of the

measurements. Such a workload is called a drive or test workload.

The form of the test workload depends upon the techniques used

in the evaluation study. If empirical studies of the system are made,

the test workload will consist of an executable job stream. When

analytical models of the system are used, the test workload could be

represented in the form of interarrival and service distributions [23].

A simulation study would require an abbreviated job description in a

form compatible with the simulator that uses this workload.

1.7 Properties of Test Workloads

Regardless of the form of the test workload, there are a number of

properties which the test workload should possess to enhance its use-

fulness in an evaluation study. Ferrari [32] lists eight such proper-

ties. Some of the more important of these properties are given below.

Representativeness. The most important characteristic of a test

workload is that it be representative of the actual workload. A test

workload is representative if the system's measured performance when

executing the test workload approximates the system's measured perform-

ance when executing the actual workload. This definition implies the

existence of a distance function or metric by which it is possible to

measure the relative degree of representativeness between two candi-

date test workloads. Unfortunately, such a metric does not exist,

since the degree of representativeness depends not only on the perform-

ance measures used, but also on the relative weights assigned to each

measure. [31].

12

Reproducibility. Aside from being representative, a test workload

must be reproducible. Comparative evaluations as defined earlier are

designed to assess the relative performance of two or more systems. If

the effects of the different performance capabilities of the systems

are to be isolated, the same test workload must be executed on each

system. If different test workloads are executed, any variation in the

obtained performance measures could be due to either the test workload

or the actual system differences. A second reason that system test

workloads must be reproducible is that a replication of the basic eval-

uation experiment may be desirable. This repetition allows for greater

credence in the results.

Flexibility. A flexible test workload is one that can be easily

modified. A researcher may wish to modify the test workload for a

number of reasons. First, the actual workload of a computer system is

likely to change over time. If the test workload is to remain repre-

sentative, it must be changed also. Second, in establishing the

representativeness of a test workload, it maybe necessary to itera-

tively adjust the characteristics of the test workl-. ' real j the

properties with those of the actual workload. The ease with which

these changes can be made have an impact on the cost of the evaluation

study, in terms of both time and expended resources.

Portability. A requirement in comparative evaluation studies is

that the same workload be executed on a number of different systems.

A test workload should be constructed so that it may be transported

between systems with a minimum of effort. Severe modifications to a

13

test workload can lead to biased results such as those mentioned in the

section on reproducibility.

1.8 Dissertation Topic

The purpose of this research is to investigate the development

of test workloads. There does not appear to exist a unified, compre-

hensive methodology which would allow the systems analyst to produce

a concise representative workload for use in system evaluation studies,

although considerable work has been done in the characterization and

representation of workloads. This research is designed to aid in

the development of such a methodology.

Major goals of this research include:

(a) To investigate the characterization of a computer system

workload at a gross system level (daily/hourly characteristics) to

aid in the selection of interest periods in a performance evaluation

study.

(b) To examine the input job stream at a job or job step level

with the aim of characteriting the pattern of resource requests.

(c) To investigate the design of parameterized synthetic jobs,

which can be used in the construction of test workloads.

(d) To attempt to establish a step-by step procedure which can

be used by systems personnel in developing test workloads for use in

evaluation studies.

(e) To examine the procedure of (d) with an eventual aim of

automating as much of the procedure as appears feasible. Though full

automation of the procedure is not a goal of this research, the antici-

pated difficulties in this automation process will be considered.

-- _ _ _ _ _ - - .!

14

1.9 Dissertation Contents

This dissertation is organized according to the three phases

involved in the development of test workloads. These phases are the

(a) representation of the real workload, the

(b) analysis of the real workload, and the

(c) construction of the test workload.

A literature review of the current state of the art is contained

in Chapter II. The literature review surveys the attempts made in the

past few years to solve the problem of test workload construction

suitable for use in performance evaluation studies.

Chapter III addresses the problem of representing the real work-

load. Some considerations in selecting an appropriate subset of the

real workload, choosing a set of descriptors to use in representing

each workstep, and collecting data to obtain real workload values for

the descriptors are outlined.

Chapter IV contains a description of various statistical tech-

niques useful in analyzing the represented worksteps for similar

resource demand patterns, and summarizing the often voluminous amounts

of data in an accurate and succinct manner.

The actual construction of the test workload is described in

Chapter V. Some considerations and techniques for designing synthetic

jobs are outlined. Procedures for validating (verifying the accuracy)

the synthetic job stream are also given.

Chapter VI consists of a detailed case study illustrating many

of the techniques outlined in previous chapters. The test case is not

carried to conclusion (i.e. a complete ready-to-run benchmark) due to

15

a need to limit the scope of the research. The details necessary to

carry it to such a conclusion are outlined.

The research is examined with the aim of producing a description

of a fully automated test workload generator in Chapter VII. The

results of the research are summarized, the more important points

originated in this research are delineated, and areas of future research

are suggested.

I.

16

CHAPTER II

LITERATURE SURVEY

2.1 Introduction

The workload of a computer system consists of all individual jobs

and data that are processed by the system during a specified period of

time [86]. One of the principal problems facing a researcher conducting

a performance evaluation of a computer system is representing the

system workload in a form compatible with the evaluation techniques

employed. It was mentioned earlier that the test workload should be

representative of the actual workload in order that valid performance

measures can be obtained; reproducible to allow replication of the

experiments and verification of questionable results; flexible to allow

easy modification; and portable to minimize the effort required to

transport the workload between systems. The criteria for a "good" test

workload are, to some degree, opposing, requiring compromise on the part

of the researcher.

Some of the factors influencing the development of a test workload

are the selection of which jobs to include in the workload model, the

characterization of jobs in the real workload, and the type of test

workload to use. The approaches to this problem which have been taken

in recent years will be surveyed in this chapter.

17

2.2 Selection of the Workload

In most evaluation studies it is not possible to execute the entire

job profile on each potential computer system to be evaluated. Some

workloads are non-recurrent in the sense that there is no readily dis-

cernible cyclic pattern of resource demands. Other workloads have an

extremely long repetition cycle (i.e. one week), hence inclusion of the

entire job profile for a given cycle would not be feasible. This

requires that a subset of the actual workload be used in constructing a

test workload.

Choosing which jobs are to be included in a test workload is not a

well-defined task. Hellerman and Conroy [42] list three important cri-

teria in selecting jobs. These are

(a) those jobs which are run most frequently,

(b) those jobs which account for most of the system time and

resource use, and

(c) those jobs whose completion-time requirements are most

critical to the system's mission. The identification of these jobs may

be somewhat difficult.

Since the test workload will normally be constructed using only a

subset of the actual workload, one approach to the selection of jobs is

to use the techniques of statistical sampling [83]. Jobs are selected

at random from the real workload for use in constructing the test

workload. As with any sampling procedure, there is a risk of obtaining

a non-representative sample, and thus constructing a test workload which

does not resemble the actual workload.

18

Another approach to the selection of the workload is to divide the

actual workload into classes based on job functions. Then a number of

jobs could be selected from each class based on their proportion in the

total mix [52]. This segregation of the actual workload into classes

could be done manually, or automated through clustering algorithms.

Still another approach to the selection of the workload is to pick

that period of activity which has the greatest influence on the problem

being studied. For example, if the load on the system is being studied,

an obvious workload to consider is the period of peak activity. It

should be apparent that if this approach is taken, the test workload will

not be representative of the entire workload. This may, however, not

be a serious constraint on the validity of the study [13].

Once a subset of the workload is selected for inclusion into the

workload model, data must be collected which reflect the characteris-

tics of the jobs included. System accounting logs, such as IBM's

System Management Facility [47], or trace facilities supplied with the

system, such as IBM's Generalized Trace Facility [48], are ready sources

of such data. If these facilities are not available, data must be

collected with a monitor [75]. The first approach appears to be the

more popular [4,46,83,91] since the data is available with essentially

no required modification to the system. The second alternative has,

however, also been used [10].

2.3 Characterization of the Workload

Before the characterization of a real workload can be made, a basic

unit of work must be defined. In some evaluation studies, the unit of

I

19

work may be a transaction, while in others it may be a job or job-step.

Evaluation studies involving a general purpose system may utilize both

transactions and jobs. Different types of workloads are generally

considered initially separate, however lend themselves to be combined

to form a composite workload. In the remainder of this section, the job

will be adopted as the basic unit of work. It should be recognized that

similar considerations apply for transactions in a time-sharing/

interactive environment.

Jobs or job steps in a batch processing environment can be described

by the type of processing required, or alternately by the demand they

place upon system resources [86]. The first approach is termed the

service demand representation, while the latter is termed the resource

demand representation. When the service demand approach is used, some

of the typical processing requirements might be compilation, sort-merge,

or file updates [86]. The distribution of the total jobs among the

different processing groups provides an indication of the nature of the

workload. Since this description does not depend on the particular type

of computer system (i.e. a program which requires compilation on one

system will generally require compilation on another), it can be referred

to as a system independent description. Independence of any given

system means that it can be used in comparative evaluations involving

V. heterogeneous systems. This characterization is highly desirable,

particularly in selective evaluations in which a potential customer is

attempting to decide which of two or more different vendor's equipment

.

20

will best satisfy those needs. The service demand representation is

rarely feasible, since information on the processing requirements for

each individual job in the work stream is difficult, if not impossible,

to obtain.

An alternate characterization is obtained if the computer system

is viewed as a collection of resources upon which the users (workload)

place demands. Some of the resources common to many computer systems

with corresponding demands include the processor (CPU time), I/O channels

and devices (number of I/O activities), core memory (size of the region),

and unit record devices (number of cards read or punched, number of

lines printed) [86]. The demands for these resources can be considered

as the characteristic variables of the real workload processed by the

system. A job can be described by a set of these characteristics [1],

and since the system only recognizes a job by its pattern of resource

demands, two jobs with the same resource demands would be characterized

and treated identically [86]. It should be noted that the resource

demands of a given job will vary from one computer system to another.

Thus, this characterization is system dependent, and should be only used

in comparative evaluations involving homogeneous systems. Its main

usefulness would appear to be in system improvement studies involving a

single system.

Regardless of whether the resource demand or service demand

approach is used to characterize the workload, a job can be represented

by an n-tuple v=(v1 , v2, v), where vi represents the magnitude

n

21

of the demand for the ith- resource or service. Using this representa-

tion, a numberot different approaches have emerged for selecting jobs

and setting the levels of their demands for each of the resources or

services. Ferrari [32] describes five such approaches.

The first approach involves constructing the probability distribu-

tion of the demand levels in the real workload. By sampling these

distributions, the appropriate demand for each resource or service can

be derived for each job included in the workload model. This method was

used Ly Schwetman and Browne [81], and a simulation based on this

technique was described by Rosen [78]. The sampling technique used

would appear to affect the representativeness of a workload description

produced by this method.

The second approach is to extract real jobs from the real workload

by sampling the workload. The resource/service demands for these

sampled jobs are used to characterize the jobs in the workload model.

This method has been used by Shope, et al. [83] and Wood and Forman [91].

The third approach mentioned by Ferrari [32] is to partition the

real workload into classes, each characterized by similar combinations

of resource/service demand patterns. A suitable number of jobs can

then be selected from each class, and the resource demands for these

jobs used to characterize a job in the model. This approach has been

used by Joslin [51], Hunt, et al. [46], Agrawala, et al. [4] and

Mamrak and Amer [66].

The fourth general approach is to construct the joint probability

distribution of the pararpeters in the real workload (i.e. resource/

22

service demands) and derive from this distribution the parameters Qf a

set of jobs with the same distribution. Sreenivasan and Kleinman [.96]

proposed this method arid applied it to the construction of a test wor&-

load for a batch-process;ng installation. The major drawback to this

method would appear to be that if a number of parameters are present,

the joint distribution becomes difficult to manage. The last technique

considers a job as a Markov process in which the states of a job are

specified in terms of the values or ranges of values of its resource/

service demands. The state-transition probability matrices for the real

workload are constructed and used to derive the sequences of values

for each job's parameters. This approach was investigated by Lasseter,

et al. [62] and a model using this approach was implemented by Lindsay

[63]. A recent work [70] investigated the modelling of a job in which

the states of the Markov model were the types of programs being executed

during each succeeding job-step.

Regardless of which of the approaches is used, the result should

be a workload model stated in parametric form. That is, the real

workload will be represented as a series of jobs, each of which has

a certain pattern of resource/service demands.

2.4 Ty pes of Test Workloads

Test workloads can be classified as executable or non-executable

[32] depending upon whether they are intended for use in empirical

studies or analytical/simulation studies. Non-executable workloads are

of two general types. The first type is the probabilistic or distri-

butional workload. In this approach, the requests for resources or

23

services are represented as probability distributions. The real distri-

bution of these demands is often approximated by such standard distribu-

tions as the geometric distribution, or the hyperexponential distribution

[88]. The closeness of this fit is obviously a factor in the degree of

representativeness achieved. This approach has been used by many

researchers [8]. Since the thrust of this research is not toward

analytical/simulation studies, no in-depth review of this representation

was made.

Alternately, the test workload may be script of system demands

based upon the observed requests of a previously executed workload.

This approach is called a trace, since it traces out the set of demands

of a previously executed workload. A trace may be so detailed as to

indicate each individual machine instruction executed, or be a series uf

aggregate demands placed on combinations of system resources [22,67,90].

As pointed out by Svobodova [88], the representativeness of a system

trace can be affected by the artifact introduced in the monitoring

process. Again, since this approach is of use in analytical/simulation

studies, no detailed review was undertaken.

The most obvious choice for a test workload in considering execut-

able workloads, is to use the actual workload (or a subset of this

workload) that the users submit. In this case, the test workload is

known as a benchmark. Benchmarks reflect demands the users make on the

5ystem, and these user demands must be translated into demands for

system resources. Natural workload models (benc-arks) have been

investigated and used in a number of studies [14,51,79,87]. Their

24

use, however, has a number of drawbacks. These include

(a) the drive workload is not flexible since it is constructed

from jobs with fixed characteristics,

(b) large amounts of data on auxiliary storage may need to be

duplicated to enable the running of some real jobs and

(c) security or privacy considerations may prevent the use of

some jobs [86]. These and other considerations have led to the inves-

tigation of alternate forms of executable workloads.

An instruction mix is an artificially constructed job which is

composed of a precise mix of certain types of instructions. This type

of test job was one of the first artificial models suggested for use

in performance studies [32] and it is useful in comparing the relative

throughput of processors [88]. The most comon mix is the Gibson

mix [35], although numerous others have been suggested [33,45]. There

are some disadvantages to using instruction mixes which tend to

severely restrict their applicability. These disadvantages include

that their use is restricted to comparing systems with similar instruc-

tion sets, and that they fail to account for input-output [42].

Another model which has been used to represent jobs in a test

workload is the standard job or kernel. These artificial jobs are

constructed to exhibit a particular behavior, and thus they can not

be easily modified. They are of use when a projection of the workload

is needed. They have also been used to compare the relative performance

of language translators. Many collections of standard jobs exist [44].

A type of artificially constructed executable workload which has

25

received considerable attention in recent years is the synthetic job.

A synthetic job is a program which does not perform any "useful" com-

puting, but when executed results in demands for system resources

similar to the demands of the actual workload. Synthetic jobs are

generally written in a high level language with parameters which allow

for easy modification. These parameters normally allow the user to

specify the size of the program, amount of CPU time used, number and

types of files accessed, and the amount of I/O performed. Thus,

similar to benchmarks, synthetic jobs represent the workload from the

user's point of view. The use of synthetic jobs overcomes many of the

disadvantages of benchmarks. Resource-oriented synthetic jobs are

typified by the single adjustable job proposed by Buchholz [18].

Wood and Forman [91], and Sreenivasan and Kleinman [86] have success-

fully used the Buchholz job for constructing synthetic test workloads.

Curnow and Wichmann [25] developed an Algol job to simulate many com-

putational procedures. Oliver et al. [76] developed a series oF five

simple synthetic jobs and experimented with them in producing synthe-

tic workloads. Functionally oriented synthetic jobs have been described

by Joslin [51] and Lucas [65]. For interactive or time-sharing environ-

ments, the synthetic jobs are typically developed from scenarios that

specify system-independent functional activities and include a desig-

nation of all actions, pauses and decisions made by the user. Work

in developing approximately representative test workloads for inter-

active systems has been done by Karush [53], Nolan and Strauss [74],

Wright and Burnette [92] and Crothers [24].

26

2.5 Validation of Test Workloads

The results of the workload characterization process described in

section 2.3 should be a model of the workload. The test workload then

can be generated from this workload model through suitable represen-

tation of the jobs making up the model. Since the aim of constructing

a workload model is to obtain a representative test workload, the

validity of the workload model should be assessed. Agrawala et al. [4]

describe validation of workload models obtained through the clustering

approach. They suggest that the workload model should be constructed

from one set of data (the design set) and validated using a second set

of data (the test set). The method of hypothesis testing [43] is

suggested for use in such a validation process.

Ferrari [32] discusses validation of the test workload. The

procedure suggested involves the execution of the test workload on the

system being tested. The pattern of resource demands made by the test

workload is then compared to the pattern made by the real workload.

This validation procedure was followed by Schwetman and Browne [81]

and Kernighan and Hamilton [55]. Ferrari [32] suggests that secondary

performance indices, in addition to those primary indices which were

used in constructing the test workload, be included for use in valida-

tion.

2.6 Summary

Various approaches used to generate representative test workloads

have been surveyed in this chapter. It should be apparent from the

number of approaches surveyed that there is no widespread committment

- ..

27

to any one single method. However, the approach which combires charac-

terization using clustering analysis and implementation using synthetic

jobs appears to be gaining favor as the most promising approach.

The characterization of workloads and its impact on computer

performance studies is still not well understood. Those approaches

which were surveyed have not passed the test of time. That is, in

most cases, they are single examples of possibly useful procedures.

Until they are used by other researchers, they remain simply suggestions

on how one might proceed.

717

28

CHAPTER III

SELECTING THE WORKLOAD

3.1 Introduction

The workload of most general purpose computing systems is dynamic

in the sense that it cannot be represented as a cyclic demand for re-

sources with a manageable repetition period. Furthermore, the needs of

a user community historically have tended to grow to match or exceed

the capacity of the computing system. Though the type of computing

done may not change dramatically, the number of users and their

frequency of use will steadily increase over the life of a system

[46].

The dynamic nature of the workload of a computer system basically

reflects the diversity of users. For example, in a large university

environment, jobs submitted to the computer system could include

instructional jobs, research jobs, administrative jobs (i.e. grade

reports), commercial jobs, and overhead jobs (i.e. billing, etc.). The

resource demand characteristics of these various classes of jobs may

be radically different. Instructional jobs are generally small jobs,

which individually use minimal resources, but due to the sheer number

of such jobs in the job mix, they become a significant part of the

workload. Research jobs, on the other hand, are much larger jobs,

hence individually account for a greater share of resource use than

29

instructional jobs. Administrative and overhead jobs may be difficult

to categorize since they are run for many different reasons. It should

generally be apparent that they make liberal use of input-output (I/O)

facilities, since most billing/report functions require heavy access to

stored data files.

Not only are the computational requirements of the various classes

of jobs different, the frequency and timing of runs may be significantly

different. The frequency and timing of instructional jobs are influ-

enced by factors such as the beginning/end of the semester, when the

particular programming as.ignment is due, and even the schedule of

extra curricular activities. Research jobs are influenced by such

things as project deadlines. Administrative/overhead jobs may be

considered cyclic, since they are generally run at about the same time

each month/semester. The pattern of submissions of all classes,

except possibly overhead jobs can be affected by various operational

strategies such as reduced rates at particular times of the day.

The diverse nature of the workload (i.e. various types of jobs and dif-

ferent arrival patterns) hinders any characterization effort.

3.2 Constructing a Workload Model

A problem which has received a great deal of attention [3,4,5,

12,41,46,66] is the establishment of a model of a computer workload.

This is, in a sense, an attempt to characterize the users of a computer

system. Such a model is important from the viewpoint of management

[46] since it aids in planning. That is, if the characteristics of

-no" hob

30

the user population are known, projections can be made, and orderly

expansion or replacement of the present system may be facilitated.

The approach taken to solve this problem has been statistical sampling.

The workload of the computer system is observed over some period of

time (i.e. a day, a month or a year). Random sampling of this collec-

tion of jobs is then performed to achieve a representative collection

of jobs. This reduced collection is then analyzed to discern under-

lying characteristics. These underlying characteristics are then

inferred to the population as a whole. There are a number of difficul-

ties associated with such an approach. Among these are:

(a) A significant part of the workload may be in the form of

a relatively small number of extremely large jobs. These may be

excluded from the model merely by chance.

(b) The workload of a computer system is generally not static in

time. That is, a workload model constructed using data from a parti-

cular period of time may not even resemble the workload present at

some other time, particularly with respect to the relative proportion

of various job classes represented in the model.

Even if a representative workload model can be constructed,

there are other difficulties which minimize the usefulness of such a

model to construct a test workload for use in a performance evaluation

study. Some of these difficulties are detailed in the next two

sections.

3.3 Environmental Impact on Resource Demands

The resource demand pattern for a given workstep (i.e. job,

31

transaction, or job step) is to some degree dependent upon its envir-

onment. There are the obvious differences in the timing of the

resource demands. The recorded magnitudes of the demands may also

vary significantly from one run to the next of the same program

depending on the system loading at the time. This difference in

resource usage (and hence in the amount charged) from one run to the

next of the same program may be baffling and sometimes annoying to

the user; it must also be considered when constructing test workloads

for performance evaluation studies. That is, a workstep which is

removed from its environment and included in a sample for an evalu-

ation study may exhibit a decidedly different resource demand pattern

in its new environment.

An example of a particular resource demand which is subject to

environmental variations is the amount of central processor (CPU)

time required to complete a task. In a recent study, Davies [26]

reported significant variance in the recorded CPU time for the same

compute-bound program run under differing degrees of system loading.

It was found that the recorded CPU time tended to increase as the

loading on the system got heavier. There are two sources cited for

this variance in CPU times. The first, referred to as the "true vari-

ation" is due to differences between runs in such things as cache per-

formance, paging behavior in virtual memory systems, and memory access

speed if processing is overlapped with "cycle-stealing". The second

cited source of variation is due to the non-repeatability of how the system

charges time to user processes, system overhead, and the idle state.

32

The charging algorithm varies from system to system. IBM [47] recog-

nizes the possibility of variations in CPU time between two runs of the

same program, and attributes it to such factors as channel program

retries, CPU architecture (core buffering), cycle stealing with inte-

grated channels, queue searching (such as task switching) and pending

interrupts. Although in many cases the variation of CPU time between

two runs of the same program may be small, Davies [26] cites one

instance in which two runs of the same program produced 11 CPU

times in the ratio of 1:2.

A second resource demand which is subject to large environmental

variations is paging behavior. Paging activity is influenced by two

factors: program construction, and system environment. A program which

exhibits a high degree of locality of reference [23,85] will generally

not incur as much paging activity as one which does not have this

property. This generally will have no impact on selecting an appropri-

ate workload since the structure of programs are not normally modified.

It will, however, have an influence on the development of synthetic

jobs which is considered later. The opportunity for environmental vari-

ations in the paging behavior of a program becomes clear when a parti-

cular paging strategy is considered. Consider, for example, the Least-

Recently-Used (LRU) paging algorithm [23]. This is a demand-paging

algorithm in that a page is only read into main memory when a reference

to it is made. As long as main memory is not full, no replacement of

pages is made. When physical memory is full, a strategy is employed

to decide which of a program's pages are to be "rolled-out" to free

space to read in the next referenced page. The LRU algorithm assumes

33

locality, and replaces that page which has not been referenced for the

longest period of time. If and when that page is again referenced, it

must be read back into main memory. Thus if a program is executing

in an environment in which main memory is not fully used, it is likely

to incur fewer page faults than if it is executing in a heavily loaded

environment in which some of its pages have to be "rolled out" and

then "rolled back in" upon the next reference to them. This, of course,

can result in widely varying channel utilization rates as well as con-

tributing to variations in CPU time and I/O time.

3.4 Selection of an Appropriate Workload Subset

A performance evaluation study is normally conducted for a speci-

fic purpose. Studies performed on a single system could involve such

things as assessing the impact that various dispatching strategies have

on the average turnaround time; assessing the effect that a different

page replacement strategy would have on paging behavior; or assessing

the impact that adding another increment of physical memory will have

on the behavior of a virtual memory machine. Obviously, one would like

the test workload to exhibit certain properties to enhance the study.

For example, if the evaluation study involves assessing the relative

behavior of two page replacement rules, and a test workload is employed

which does not fully utilize physical memory, the results of the study

are likely to be less than satisfactory. One must, then, match the

test workload to the evaluation study to some degree.

Workload periods which are apt to be of interest in evaluation

studies are likely to be extreme periods. That is, the analyst wishes

34

to examine the system when some feature of it is heavily loaded. This

fact, along with the failure to account for environmental variations,

would seem to severely limit the applicability of system workload

models constructed by statistical sampling to performance evaluation

studies. That is, it is highly unlikely that one could achieve a job

mix which would "strain" the system in the desired manner through

random sampling.

An alternative to constructing the system workload model is to

select a period of system activity which exhibits the desired charac-

teristics, and use that period for the evaluation study. Not only is

the desired characteristic present, but the environment has been pre-

served, which would minimize the problem of environmental variations.

There is some sacrifice made if this procedure is followed, however.

That is that since there is no randomization in the assignment of work-

steps to the test woKload, one cannot expect that the workload is

representative of the entire real workload. Hence, inferences of system

behavior must be restricted to at most similar periods. This may not

be too small a price to pay when compared with the alternatives.

Detection of abnormal system activity which may be of interest in

performance evaluation studies is rather a trivial task. System

accounting logs normally contain summary data on system activity at a

level appropriate for such detection. That is, information on the

number of jobs processed, memory utilization, CPU utilization, etc., on

a per hour or per day basis is recorded for management information.

This data can be sunnarized and displayed in the form of a gross system

profile. Abnormal periods are usually apparent from such profiles.

35

Once the appropriate period is selected, it can be examined in more

detail to insure that it does indeed possess the required characteris-

tics. Although they did not use it for this purpose, Bear and Reeves

[12] describe the system workload of the CDC CYBER 74 system at Wright-

Patterson AFB, Ohio at a level which would be appropriate for selection

of interest periods. A similar profile of the workload of the

Amdahl 470/V6 at Texas A&M University is illustrated in the case study

of Chapter VI.

3.5 Selecting Descriptors for the Worksteps

Once the period of interest has been selected, a set of descrip-

tors by which real jobs can be represented must be selected. If system

logs are used to obtain data on the real workload, this involves

deciding which of the recorded items are essential to characterize each

job's demand on the system. If a monitor is used to collect the data,

this determination must be made prior to the installation of the moni-

tor, to allow for the collection of appropriate data.

The number of descriptors used to characterize each job will, in

general, have a dramatic impact on the representativeness of the gener-

ated test workload. That is, if too few descriptors are used, the

analyst cannot hope to faithfully reproduce the system behavior. If too

many decriptors are included, on the other hand, the analysis of the

workload data is complicated.

Ideally, if the resource demand description of workload is ap-

plied, the workstep descriptors should completely specify the demands

placed upon the various system resources. Some of the resources upon

36

which jobs place varying degrees of demand are

(a) central processing unit (CPU),

(b) I/O processors (channels),

(c) main memory, and

(d) Peripheral devices.

The demand placed upon some of these resources are easier to characterize

than others. For example, the demand placed upon the CPU is reflected

in the elapsed time the CPU spends in the execution of the job. The demand

placed upon main memory can be measured by the size of the maximum

partition used by the job, the average partition size used, or if great-

er resolution is desired, the weighted sum of the various partition

sizes and the time each such partition is utilized.

The characterization of the demands placed upon I/O channels and

peripheral devices is somewhat more difficult. There are normally a

myriad of peripheral devices attached to a general purpose computer

system. Itis highly unlikely that an evaluation study would require

resolution to the extent of measuring the demands placed upon each

individual device. A reasonable measure would appear to be the amounts

of each particular type of I/O activity (i.e. tape, disk, unit record)

done by the job. Most system accounting logs reflect a number of mea-

sures of I/O activity. These include I/O time, as well as the number of

data transfers initiated on each channel. Though the number of data

transfers is not a direct measure of channel activity since varying

amounts of data can be transferred, it may be sufficient in many

evaluation studies. For those requiring more precision, the system

accounting data can be augmented with hardware monitor data reflecting

37

the average channel activity per data transfer [91].

Previous workload characterization efforts reflect a multitude of

descriptor sets used to characterize the demands placed on system

resources by individual jobs. Sreenivasan and Kleinman [86] used only

two variables, CPU seconds and the total number of data transfers

initiated (EXCP count). A third variable, amount of core utilized, was

recognized as important but it was found that the vast majority of jobs

required similar amounts of memory. For this reason, it was not in-

cluded in the descriptor set. Hunt [46] used eight descriptors: cards

read, lines printed, CPU time, Peripheral Processor Unit (PPU) time,

central memory, tape drives charged, cost to user, and whether or not

FORTRAN was used. Agrawala, et a]. [3,4,5] used eight features: CPU

time, executive request and control card charges, average number of

512-word core blocks used, number of job steps (programs) executed, wall

clock time, I/O to FASTRAND or disk devices, I/O to tape, and I/O

to high-speed drum devices. Mamrak and Amer [66] summarized the work-

load using seven features: CPU time, disc EXCPs, tape EXCPs, cards

read, lines printed, DD cards, and core used in kilobytes, where an

EXCP reflects an I/O request and a DD card (data and device specification

card) reflects a file accessed.

As can be seen from the above examples, there is no widespread

agreement as to what constitutes a valid feature set for use in charac-

.erizing the resource demands placed upon a computer system by a parti-

cular job. The problem appears to be somewhat dependent upon the

particular system in use and involves considerable intuition c,: the

38

part of the analyst performing the study. A different set of descrip-

tors, along with some justification for its use is described in the

case study in Chapter VI.

3.6 Collectinq Data for Construction of the Test Workload

Once the particular subset of the real workload applicable to the

evaluation study is selected, and an appropriate feature set formulated,

the data reflecting the feature values for each workstep in the subset

must be gathered. It may be that data collection is done before the

determination of an appropriate feature set or vice versa. These two

phases are certainly complementary, since it will do no good to choose

a feature which cannot be measured and it is a waste of resources to

collect data on features which are not used in characterizing the work-

load.

If monitors are used to collect resource demand data, there is

a need to be able to project when in the future the system workload

may exhibit similar characteristics to the period selected for the

study. That is, the period of interest for an evaluation study is

normally selected using historical data in the form of a system profile.

Unless the monitor was installed and data collected during that parti-

cular period, which is unlikely, a period in the future likely to

exhibit the same characteristics must be projected, so the monitor can

be "turned ovi" to collect the appropriate data. It then must be veri-

fied after the data is collected if in fact the projected period

exhibited the desired characteristics. This problem, as well as the

added cost of using a monitor, has caused most researchers attempting

39

to construct test workloads to use system accounting data.

The case for using system accounting data in characterizing the

resources used by a particular job is strong. First, the user is

charged according to the usage reflected in these logs. Thus, at least

from the point of manas;ement, the logs reflect the usage of critical

resources. Second, the data is collected already for other purposes.

The system analyst then obtains the data essentially without cost,

either "out-of-pocket" or in terms of additional overhead to the system.

Techniques for the collection of data as well as the types of daca avail-

able from the system logs at Texas A&M University are considered in

the case study of Chapter VI.

3.7 Sucmiay

The selection of an appropriate subset of the real workload to

use in a system performance evaluation study is one of the first

decisions the analyst attempting to construct a test workload must

consider. The subset selected must exhibit certain characteristics to

enhance the evaluation study being conducted. Previous approaches

based upon statistical sampling are not likely to yield the desired

workload, since they fail to account for environmZntal impacts on the

resource demands, and may exclude certain key parts of the workload.

An alternative is to construct a system profile using system accounting

data, examine that profile to detect particular desired loading charac-

teristics, and use all or a portion of the actual workload during that

period in the study. The environment is thus preserved, and the analyst

is assured that the particular behavior of the system being studied

40

will be induced by the workload.

Once the subset of the workload is selected, the demands placed

upon the various system resources by individual jobs must be quantified

through the selection of a set of descriptors. This choice involves

achieving a balance between the resolution of the precise resources

used and the computational complexity in the analysis phase. Collection

of data reflecting the real workload values for the descriptor set

selected is the last task associated with this initial phase. System

accounting logs provide a readily available source of data, and

normally provide adequate information on resource utilization.

41

CHAPTER IV

ANALYZING THE WORKLOAD

4.1 Introduction

The techniques outlined in Chapter III will produce a subset of the

real workload which can be used to construct a test workload for use in

a performance evaluation study. This subset is represented as a number

of jobs, each described by some set of descriptors. The time of arrival

to the system, possibly the originating location if operating in a dis-

tributed environment, and the appropriate values of the descriptors

form a complete specification of each job's contribution to the over-

all workload of the system. A test workload can be generated by re-

placing each of the jobs on a one-to-one basis with synthetic jobs

which exhibit the same or similar resource demands. This, however, can

prove to be an extremely trying task if a large number of jobs are

included in the workload subset. It requires designing a separate

synthetic job to replace each real job in the subset. Previous studies

[3,4,5,30,46,66,86] have shown that the workloads of computer systems

tend to be composed of a relatively small number of job classes, with

resource demands similar within each class. If such classes are

present, the effort required in constructing the test workload will

be considerably diminished, since one synthetic job can generally be

-J4

42

used to represent all members within a class.

Thus, there is the need for analysis of the real workload subset

to detect and isolate those jobs which exhibit similar resource demand

characteristics. This chapter will outline a statistical clustering

methodology useful in such an analysis.

4.2 Scaling the Descriptor Values

In general, each job in the workload subset can be described as to

its resource demand characteristics by a set of descriptor variables

X1, X29 ... , X n , where the value of X j=l, 2, ..., n, represents the

demand placed on the jt- resource. The magnitude of the demands are

obviously expressed in different units. For example, CPU time may

be expressed in seconds, while memory utilization may be expressed in

kilobytes. There is no obvious comparison which can be made between

the various units, thus this unit dependence must be removed before

the analysis can proceed.

One approach to scaling the variables is to transform each of the

X. values by
, X - Xj min
j X i max - Xj min

where Xj min is the minimum observed value of X. in the workload

subset and Xj max is the maximum observed value of Xj in the work-

load subset. This transformation scales each of the varables to the

same range, namely from 0 to 1. The mean of the scaled variables is

X. - X.
X. = ~ while the varifince of the scaled variables is
J max 3j min

.........................

43

V(X) = 1 V(X.) where is the mean and V(X.) is the_~(. -X)2 3xJ3
Xj max Xj min)

variance of the original unscaled variables. This approach has been

used in at least one study [66] to remove the dependence upon units

from the workload data.

An alternate approach to scaling the variables was taken by

Agrawala, et al. [3,4,5]. They defined Xa to be the a-tile of the

observed values of Xj, and then linearly scaled using

, l0(Xj - Xj mn)
Xj j j min

(X j - Xj min)

This results in a feature space in which 100a% of the observed data

points lie in the interval from 0 to 10. For example, if a is chosen

as .98, 98% of the transformed values will lie in the interval from

0 to 10 [3,4,5]. The stated purpose behind such scaling is to

produce an essentially uniform feature space which is not distorted

by the presence of outliers. The mean of the j-h descriptor variable

10(7 I - X. m)
under this scaling is X. = i min , while the variance is

100 X - Xj min)

V(X (.0)_X V(X.)
V = (Xj - Xj min)2

A third approach to scaling is to standardize the variables. That

is, to scale each of the j variables to mean 0, variance 1. This is

accomplished by the relation

x - x.
Xj = J. This transformation,

although it has not been applied (at least as can be determined) in

44

workload studies, is probably the most common transformation in statis-

tical studies.

There are a host of other transformations which could be applied

to workload data to remove the unit dependence and provide commensurable

ranges for the descriptor variables. There does not appear to be a

clear cut choice among the transformations since they are computa-

tionally similar and all accomplish the basic purpose. Standardization

provides some side benefits. That is, if this means of scaling is

used, the scaled data measures the variability in terms of standard

deviation units. Furthermore, since the original data is expressed in

widely different units, this means of scaling is preferred as a

prelude to a principal components analysis [2,72].

4.3 Accounting for Correlation Among Variables

As developed in the previous section, each job selected for use in

a performance evaluation study can be represented by a vector X = (Xl,

X2 Xn), where the value of Xj represents the magnitude of the

demand for the jtn resource. If there are m jobs in the selected sub-

set, the resource demand characteristics for the subset can be repre-

sented by an mxn matrix

X11 X 12... XIn

X 21 X22-"X 2n

X=

L X mIX m2-"Xmn _J

where the element Xij represents the magnitude of the demand of the i h

job for the j-n resource.

45

The variables (descriptors) selected to measure the magnitude of

the demands for resources for jobs in the selected subset will likely

be correlated to some degree. That is, there is a degree of linear

association among the variables. For example, it may be noted that

jobs which print many lines of output have relatively large values of

I/O time, or that jobs which incur a high degree of paging issue an

inordinately large number of disc I/O requests.

The effect of intercorrelation among descriptor variables on the

resource demand pattern of the workload subset can easily be visual-

ized in two dimensions. Let X and X2 be two descriptor variables,

which are correlated with a correlation coefficient r>O. If a scatter

plot of the standardized values of Xl and X2 is constructed, an

elliptical pattern oriented along the line X2 = rX, will result, simi-

lar to that depicted in figure 4.1.

Fig. 4.1 The Effect of Correlated Variables

X2x2
X2 =rX

....... ...

Intercorrelation among the descriptor variables will bias clust-

ering results obtained when jobs are clustered by similar resource

demands [16]. The effect is to provide a weighting for the comon

46

characteristics reflected in the different variables. The severity of

this bias is difficult to assess in general, since it is somewhat prob-

lem dependent. That is, it is related to the degree of intercorrelation,

the distance metric used, and the weighting scheme supplied by the ana-

lyst.

It should be noted that high degrees of correlation do not, in

general, indicate causal relationships, since there are many instances

of totally unrelated phenomena which exhibit high correlation. However,

if two highly correlated variables are included in the descriptor set,

the biasing effect will be the same whether a causal relationship exists

or not. This bias may not be undesirable, but it should be considered

since it may help to explain seemingly contradictory results obtained

in the clustering phase.

The problem of intercorrelation among descriptor variables is

avoided if only uncorrelated variables are included in the descriptor

set. This, however, is not feasible in most cases.

Given a set of n variables which are intercorrelated, it is pos-

sible to construct a set of n or fewer composite variables which are

linear combinations of the original variables, are uncorrelated and

which account for the variance in the data [7]. This can be accomp-

lished by a method known as principal components [2,7,36,54,72,73,89].

Geometrically, the method of principal components involves a rota-

tion of axes. Each of the resource demand variables XI , X2, ... , Xn

is represented by a coordinate axis from the origin 0 = (0, 0, 0).

These n axes form an n-dimensional space, with the it- job represented

by a point whose coordinates are X1 Xil, X2 = Xi2, ..., Xn = Xin.

47

In principal component analysis, the aim is to find a rotation of the

axes so that the variable Yl represented by the first of the new axes

has maximum variance. The variable Y2 represented by the second of the

new axes is uncorrelated with Y and has maximum variance under this

restriction. Similarly, the variable Yk represented by the M new

axis is uncorrelated with YI Y2 Y k-l' and has maximum variance

under these restrictions [2]. The two variable case is illustrated

in the following figure, where the "dots" represent the various jobs

in the standardized resource demand descriptor space.

Fig. 4.2 Principal Components for n 2.

AX 2
Y = a2 1X+a 2 2X2 X2

Computationally, principal component analysis involves finding the

eigenvalues of the correlation matrix of , choosing the eigenvectors

corresponding to the nonzero eigenvalues orthonormal to each other,

and postmultiplying the data matrix by the matrix of eigenvectors.

The details of this procedure are given in Appendix A.

The matrix Y which is produced by principal component analysis

represents the scaled resource demand vectors of the workload subset

48

with relation to the orthogonal principal axes. The orthogonality
insures that the new variables Yl, Y20 ... Yr are uncorrelated, hence

clustering can proceed free of the biasing effect caused by the inter-

correlations among the original variables. An additional advantage in

possible reduction of the dimension of the feature space is qained by

using this procedure, as will be discussed in the next section.

4.4 Reducing the Dimension of the Feature Space

If n resource descriptor variables X1, X2, ..,? Xn are used to

describe the demand placed on system resources, each job will be repre-

sented by a point in n-dimensional space. Prior to clustering jobs

based upon similarity of resource demands, it may be advantageous to

investigate the possibility of representing each job in a space of

fewer dimensions. That is, it may be possible to depict the salient

features of the resource demand patterns with kn descriptor variables.

This is desirable from a computational standpoint, since the computa-

tional complexity of clustering is related to the number of descriptor

variables as well as the number of data units (jobs in the workload

subset).

The problem of reducing the dimension of the feature space has

been examined in at least two workload characterization studies [3,

66], with somewhat contradictory results. Both studies approached the

problem in much the same way. The scaled resource demand matrix was

first input to a clustering algorithm with all variables present to

achieve a "true" partition of the workload. A single resource descrip-

tor was then removed, and the data matrix reclustered. This was

49

repeated, until all distinct sets of n-l descriptors had been examined.

The process then was applied to descriptor sets of size n-2, then n-3,

and so on. The clustering performance for each set of descriptors was

measured by examining the number of intercluster "migrations" as

compared to the "true" partition. One study [66] reported promising

experimental results using this procedure, while the other [3] down-

played its usefulness. This seeming contradiction of results is

probably due to the differences in the two selected descriptor sets,

and the different degrees of intercorrelations among those features

reflected in the workload data. That is, if a descriptor variable

which is highly correlated with another variable is removed from the

descriptor set, its exclusion will likely cause fewer perturbations in

the "true" partition than if a variable which is essentially uncorre-

lated with other variables is excluded. This again follows from the

fact that correlated variables are, to some degree, reflecting the

same characteristic of the workload.

Even if the above feature reduction algorithm proves useful in

reducing the dimension of the feature space, it suffers from a fatal

flaw. As previously stated, the aim of reducing the dimension of the

feature space is to reduce the number of computations in the clustering

stage of analysis. Since there is no a priori indication as to the

relative worth of each descriptor in describing the "true" partition,

one must cluster using all of the descriptors, and then iteratively

reduce the dimension of the space. Thus, any computational advantage is

lost. This problem is overcome to a certain degree if clustering is

_ _ .

50

applied to the principal component scores rather than the scaled vari-

ate scores.

Aside from the fact that its application produces uncorrelated

variables, principal component analysis also is useful due to its

maximum variance properties. The first principal component has the

largest variance of any linear combination of the variables represented

in the resource demand matrix; the second principal component has the

largest variance of any linear combination orthogonal to the first

principal component; the third principal component has the largest

variance of any linear combination orthogonal to the first two, etc.

This leads to a valuable property of principal components, namely that

the best least squares fit of the original space of n dimensions in a

space of k<n dimensions is achieved by using the first k principal

compo-ents [7]. Thus, although to achieve a perfect fit, all

of the principal components must be retained, if the analyst is satis-

fied with representing only a portion (say 95%) of the variability,

a significant reduction in the dimensionality of the problem may be

possible.

Information on the proportion of the total variability of the data

matrix explained by the first k<n principal components is available

without recourse to clustering. That is, it is a normal byproduct of

principal component analysis. This measure is

Al + X 2 + t Ak
P X 1 + A2 + "'+ Xn , where l' 2' ""Nn are

the eigenvalues of the correlation matrix arranged in decreasing order.

j

51

Thus, by including enough components so that this ratio is at least as

great as the minimum acceptable value, one can effectively reduce

the dimension of the descriptor space and hence reduce the computational

requirements in the clustering phase. It should be noted that this

reduction of dimension is merely a reduction in presentat~op [72].

That is, measures on each of the original variables mum. :il be

taken since each may appear in the expression for a component variable.

The aim of reducing the computational requirements in later phases is

accomplished however.

4.5 Clustering Algorithms

Each job in the workload subset can be represented as an n-dimen-

sional resource demand vector X = (Xl , X2 5 ..., Xn) where the Xi are
h1

the magnitude of the demand for the ith resource. Following scaling

and principal component analysis, each job is represented as a k-dimen-

sional vector i = (Yl, Y2 ... Yky) in the principal components space.

The next, and final, step in the analysis process is to cluster the

jobs by similar resource demands, thus achieving a partition of the

workload subset.

Prior to application of a clustering algorithm, the analyst must

decide upon a measure of distance. That is, a measure must be selected

which gives an indication of how "close" two jobs are with respect to

their resource demands. A number of such distance measures are present

in the literature. Probably the most commonly applied is the Euclidean

measure given by

D(j ,) = ! (Yj,i -Y ,i ,

~i1 /2

)

52

where Y is the standardized resource demand vector for the jth job

in the principal components space, and Y is the similar vector for the

th job.

Another consideration is the appropriate weight the analyst wishes

to apply to each of the descriptors. That is, the analyst may wish to

influence the clustering algorithm so that similarities in one dimension

carry greater weight than similarities in another dimension. The

weight Wi for the ih descriptor is normally incorporated into the

distance calculation as

D(Yj5 Y i ,i _ Y£i))2

Once the analyst has decided upon a distance measure and a weight-

ing scheme, there are two general clustering schemes which may be used:

hierarchical and non-hierarchical clustering [361.

The hierarchical scheme initially views the collection of m jobs

as m separate clusters of one member each. A similarity measure is

calculated between each pair of jobs, and those two jobs which are

most similar are joined to furm a cluster of two jobs. This cluster

is generally represented by the average (centroid) vector of the two.

This process is continued, with the two "closest" clusters joined at

each step until the space is viewed as a single cluster with m elements.

The analyst can halt the process at any time, thus achieving a parti-

tion with as many clusters as desired. This type of clustering scheme

is typified by the algorithm proposed by Johnson [50].

Non-hierarchical clustering requires achieving an initial partition

of the data set. There are a number of ways of achieving this initial

53

partition [7]. These include taking the first k jobs as cluster

centroids, selecting some k jobs at random from the set as centroids,

and taking a partition achieved by hierarchical clustering as the

initial partition [7]. Once the initial partition is achieved, it

is refined by comparing all jobs with the cluster centroids, and group-

ing those jobs with the "closest" cluster. The major differences

in the various non-hierarchical schemes involve how and when the cluster

centroids are updated and how many passes are made through the data.

Non-hierarchical clustering schemes are typified by the k-means approach

of MacQueen as described by Anderberg [7].

The decision as to which clustering algorithm to use is largely

problem dependent. Hierarchical schemes generally provide more insight

into the problem, since a wide range of partition sizes (number of

clusters) can be examined with a single application of the algorithm.

This, however, is counterbalanced by the fact that the non-hierarchical

algorithms are more economical to use computationally, since they do

not require the repeated calculation of similarity measures between

each pair of data units [7]. Since the size of the workload subset

is generally quite large (i.e. 750 jobs with 7 descriptor variables

in one study [66]; 1342 jobs with 11 descriptor variables in another

[3]) the insight gained through the use of hierarchical clustering is

likely not worth the additional computational overhead incurred.

Repeated application of a non-hierarchical clustering scheme such as

one of the "nearest-centroid" algorithms detailed in Anderberg [7] will

provide the needed insight at less cost in terms of computer time.

The bias caused by intercorrelated descriptor variables is

54

exposed through principal components analysis, however it is not

eliminated. If an unweighted Euclidean distance measure is applied,

hyperspherical clusters will be formed. Since expressing the resource

demand vectors with respect to the principal components effects a

simple rotation of the axes, clustering results using the unweighted

Euclidean distance measure will be invariant under principal components

analysis. That is, the same partition of the workload subset will

result whether clustering with respect to the standardized variable

scores or with respect to the principal component scores. This

situation is illustrated for the two variable case in figure 4.3.

Fig. 4.3 Application of an Unweighted Euclidean Distance Measure

2 Example cluster
. yformed

X1

~1

55

The bias caused by the correlation between the variables X1 and

X2 is apparent in figure 4.3 by the "band" of data points in the cluster.

Thus, the intracluster variance will be greater in the direction of

correlation (YI) than in the direction orthogonal to it (Y2). A

weighting scheme is needed to equalize (or nearly so) the intracluster

variations in both directions.

Application of a weighting function causes the formation of hyper-

elliptic clusters [7], with the axes of the ellipsoids oriented along

the variable axes. If a weighting scheme could be devised so that

the intracluster variations in all directions are approximately the

same, the biasing effect would essentially be neutralized.

If the data is subjected to principal components analysis, a

measure of the variation along each of the component axes is available.

That is, Var (Yj) X j. Intuitively, a weighting function Wi which

is related to Xi would appear desirable. Such a weighting scheme

would weight the component variables in proportion to the variability

that they "explain".

Suppose that the weighting function Wi = I/Xi is applied to the

component scores. This weighting function has precisely the same

effect as standardizing the principal components and then clustering

using an unweighted distance function. The effect of such a weighting

scheme is illustrated in figure 4.4 for the two variable case, where

it is assumed that XI>X2>l.

56

Fig. 4.4 Effect of Improper Weighting

2 Example of cluster formed

It can be seen from figure 4.4 that such a weighting scheme

merely reinforces the bias rather than neutralizing it. That is, the

intracluster variation in the direction of Yl is still greater than

that in the direction of Y2 . even more so than if an unweighted

distance measure were used. This type weighting then is not likely

to improve the clustering results.

Suppose that a weighting function Wi = Xi were applied, where

Ai>l. This should result in the formation of elliptic clusters whose

major axes are orthogonal to those illustrated in figure 4.4. This

weighting scheme is illustrated in figure 4.5 for the two variable case.

This weighting is seen to have the proper effect. That is, the

intracluster variation in both directions are the same or nearly the

same.

57

Fig 4.5 Effect of Proper Weighting

2 2
AExample of cluster

Y yformed

4.6 Summary

A statistical methodology has been proposed to aid in the analysis

and summarization of the workload subset selected for use in an evalu-

ation study. The major elements of this methodology are:

(a) Scaling of the data to commensurable ranges. A number of

schemes are available to accomplish this, however, the standardization

of all variables to mean 0, variance 1 offers some advantages.

(b) Applying principal components analysis to achieve uncorrelated

variables and allow selection of some k<n of the resource variables

which account for the major part of the variance in the data.

(c) Applying a suitable clustering algorithm to associate

"similar" jobs in the principal components space. A non-hierarchical

scheme using a weighted distance metric appears the most promising.

58

An example of the application of this methodology to real workload

data appears in the case study in Chapter VI.

59

CHAPTER V

CONSTRUCTING THE TEST WORKLOAD

5.1 Introduction

The output of the analysis phase will be a summarized form of the

real workload subset. The jobs making up the subset are grouped accord-

ing to similar resource demands. Each "cluster" of similar jobs is

represented by the cluster centroid and a cluster membership list. Each

of these clusters can be further analyzed by constructing distribution

functions for each represented descriptor variable. This type of

analysis would yield a workload model which could be used in analytic/

simulation studies. Appropriate sampling techniques could be used to

extract a test workload from such a model. Empirical studies, on

the other hand, require that executable test workloads be constructed.

Thus, the construction of distribution functions and sampling techniques

will not yield a useful test workload for such studies.

A number of different types of executable test workloads were

surveyed in Chapter II. These included benchmarks, instruction mixes,

standard jobs, and synthetic jobs. Synthetic jobs offer advantages in

in the areas of flexibility and portability over instruction mixes and

standard jobs. They also avoid the security and privacy problems

associated with using real jobs (benchmarks). A test workload composed

of synthetic jobs, then, is likely to be the most useful form of an

60

executable test workload.

One of the primary criteria applied in assessing the usefulness

of a test workload is how accurately it reflects the resource demands of

the real workload which spawned it. A test workload which accurately

reflects the characteristics of the real workload is said to be

representative. Constructing a representative test workload using syn-

thetic jobs requires careful design of the jobs making up the mix. Some

of the techniques and procedures useful in designing synthetic jobs

will be surveyed in this chapter. Most of the techniques surveyed are

oriented toward test workloads constructed for a batch processing

installation. Similar considerations apply to transactions in a time-

sharing environment, however the general form of the model is different.

The actions which must be emulated in an interactive session include

user log-on, program creation, editing, program compilation, program

execution, and user log-off. A model embodying such actions can

more realistically be referred to as an interactive script [32] rather

than a synthetic job.

5.2 General Considerations in the Design of Synthetic Jobs

A synthetic job is a parametric program in which the demands placed

upon the various system resources are controlled by the values assumed

by various input variables (parameters) [32]. This relationship to

the actual resource utilization requires the programmer to approach

the design of synthetic jobs from a different viewpoint than normal

programming problems. Normal programming projects are usually under-

taken for a particular reason. That is, the user wants the computer

61

to perform a particular task. The task to be performed is the over-

riding consideration in program development. There may be an attempt

to minimize the resources used in an effort to hold down the cost of the

project, but this is generally a secondary cons- dration. Synthetic

jobs, on the other hand, are independent of the task which is performed.

They are also independent of any input data or data files accessed by

the real programs they are designed to emulate. The sole consideration

in their design is that they use the same amount and types of resources

that their real counterparts use. Thus, a somewhat arbitrary "compute

loop" can be used to force the synthetic job to consume a particular

amount of CPU time. I/O activity by real jobs can be emulated by

having the synthetic job access arbitrary files of the required type

(i.e. tape, disk, or card). These files can be "garbage files"

expressly constructed for this purpose, or any other file to which the

analyst has access. Thus, there is no unique synthetic job for each

situation. A multitude of logically different programs can be forced

to exhibit the same resource demand patterns with the proper choice

and setting of parameters.

The degree of complexity of a synthetic job is generally determined

by the level of detail used in characterizing the real workload. If

a limited resource descriptor set is used, a relatively simple synthe-

tic job will normally suffice. If, on the other hand, an expanded

resource descriptor set is used which reflects more minute aspects of

the real job's resource utilization, a more complex synthetic job will

generally be required. Ferrari [32] illustrated this point with two

examples.

62

The first example given by Ferrari [32] concerns construction of

a test workload for a batch processing installation. Jobs in the

workload were characterized by the descriptor pair (t CP, n io). The

first descriptor gives the CPU time required by the job while the

second gives the number of I/O operations initiated by the job. Since

the type of I/O is not specified, it can be assumed to be simple "reads"

from cards and "writes" to a printer (or any other mode for that matter)

in an arbitrary proportion. A synthetic job designed to emulate such

jobs can be composed of a simple loop. I/O is performed a certain

proportion of the iterations through the loop, and some arbitrary

computation performed some other (or perhaps the same) proportion of

the times through the loop. The loop is executed until the required

number of I/O operations are performed and the proper amount of CPU

time is accrued. An example of such a synthetic job and a situation

in which this low level of detail is sufficient is given in the case

study in Chapter VI.

More complex synthetic jobs are typified by the one developed and

tested by Buchholz [18]. This job is designed to emulate a file

processing action. There are three parameters used, which specify the

number of master records read in, the number of detail (transaction)

records processed, and the number of times the "compute" loop is

executed. This job can be used to emulate the resource demands of

jobs whose resource descriptor set is somewhat expanded over the

earlier one described. An example of the use of such a synthetic job

is also given in the case study of Chapter VI.

63

5.3 Parameterization of Synthetic Jobs

The parameters of a synthetic job allow the individual system

resource demands to be easily modified. In general, greater flexibility

requires more parameters, while simplicity and economy dictate that

the number of such parameters be kept to a minimum. In the final

analysis, it is the level of detail used in characterizing the real

workload which determines the number of parameters to use. This re-

quired level of detail is in turn determined by the resolution necessary

in the evaluation study. For example, consider a test workload com-

posed of synthetic jobs where each synthetic job has parameters to

specify memory size and total CPU processing time. This workload

might be sufficient if the aim of the evaluation study is to determine

the effects of altering main memory on CPU utilization. It would

not provide the required resolution if the aim of the study is to deter-

mine the effects of differing amounts of I/O processing on CPU and

I/O overlap. In fact this latter study would require at least one

parameter to allow the ratio of CPU processing to I/O processing to be

altered. It may also be necessary to include resource descriptor

variables which specify the duration and relative timing of I/O

requests. Thus, there is a three-way dependence among the performance

measures observed in the study, the descriptor variables used to

characterize jobs in the workload, and the synthetic job parameters

used to control the demands placed on various system resources.

More formally, suppose that a test workload Wt is constructed for

use in an evaluation study in which the x performance variables VV, V2,

V are to be observed. Suppose further that these performance

A

64

variables are functions of m system resources described by the descrip-

tor variables rl , r2, ... , rm, and that the values assumed by these

descriptor variables are determined by n user parameters p , p
1 2

.... Pn" The relations existing among the variables can be expressed

as

V1 = Vl(r 1, ... , rm) = V [rl(p l, Pn
, rm(P l, ..., Pn)]

= Vl(pl, ... ' Pn)

V2 = V (r1, ..., rm) = V2 [rl(p,, ...' Pn , rm(P l, '.. Pn)]

= V 2(Pl, ... Pn)

VZ = Vk(r I, ... , rm) = Vk [rl(Pl, ". Pn) , -.., rm(p l , ... Pn)]

= V (Pl, Pnd •

The relations can be summarized in more compact vector notation as

v = (7) = V [i' (i)] = V (P). Now, recognizing that the values

assumed by the parameters P,' ... ' Pn completely determine W., the

composite relation Vi = Vi(Wt), i = 1, ..., ., (or V = V (W)

results, where Wt = Wt (Pl' "' Pd)

One problem which must be solved in constructing Wt is determining

the relationship which exists between the resource descriptor

variables rl, ..., rm and the synthetic job parameters pl' Pn

The parameters pl, ... ' Pn can be assumed independent of one another,

and in some cases they may bear a simple linear relationship to the

ri s. This relationship can be established by observing the ri s

for a few runs of the synthetic job with varying pi's, and applying

regression analysis [28]. The linear form of the relationships

r i = ri(Pl, pn)
, i = 1, 2, m, allows inversion to give rela-

tionships of the form p. = pj(r I , rm), j 1 ... ,n. This assumes

65

n 3 m and that the original system is non-singular. These latter

relations can be used to determine the appropriate parameter settings

to produce a given resource demand pattern.

Examples of the use of linear regression in establishing the

relationships which exist between the resource descriptor variables

rl, r2, ... , m and the synthetic job parameters pl, P21 ...I pn are

given in the case study of Chapter VI. It should be noted that the

simple form of these relations does not suggest that similar simple

relationships exist between the performance variables Vl, V2 ... , Vk

and the resource descriptor variables rl , r2, rM. Establishing

this relationship must be accomplished during the evaluation study

itself.

5.4 Controlling the Demand for System Resources

A procedure for establishing the relationship between the resource

descriptor variables r], r2, ... , rm and the synthetic job parameters

Pl' P2 1 Pn was suggested in the previous section. This procedure

assumes that parameters which are likely to affect the job's demand

for a given resource have been established and incorporated into

the design of the synthetic job. Some of the ways in which the demands

placed upon system resources can be controlled are surveyed in this

section.

One of the major system resources is main memory. The amount of

main memory used by a given job is obviously related to the size of the

program as well as the space needed for system routines supporting

the job's execution. A job's main memory requirements can thus be

J

66

altered by modifying the size of arrays or by including routines

which may never be called. A number of systems (i.e. IBM) enforce

a policy known as "preallocation of resources" to preclude deadlock

problems [23]. The maximum amount of main memory likely to be used

by the job must be requested in advance of its initiation. If this

requested amount is not sufficient to allow program execution, the

job is terminated. The size of the region in main memory allocated to

a particular program, if such a strategy is employed, can be either

increased or decreased by altering the region request fieli in the

job control statements.

Control of the amount of CPU processing time used by a program is

possible by including a "compute-loop" control parameter. An arbitrary

sequence of computations is performed iteratively until the desired

CPU time is accrued. The required number of iterations through the

loop can be controlled precisely through access to system timers [32].

It can alternately be established in advance through calibration

experiments. The amount of processing time accrued by a particular job

is related to factors cther than simply the number of computations per-

formeJ. The number of I/0 activities initiated, for example, can have

a significant impact on CPU time used.

Control of the I/0 processing requirements of a job is more

difficult than either main memory or CPU time. There are a multitude

of different types of I/0. It may be necessary to control each of

them, depending upon the resolution needed in the study. Unit record

I/0 (i.e. cards read, lines printed, and cards punched) is the easiest

to control. The number of cards read is obviously a direct function

67

of the size of the program. It can be varied, within certain limits,

by including or excluding comment and data cards. The number of lines

printed (or cards punched) can be controlled through inclusion of a

"print" (or "punch") loop. This loop is executed a sufficient num-

ber of times to produce the desired output. Tape and disk (or drum)

I/0 is concrolled by creating files which are accessed using the

proper mode. Records can be read, modified, and written under the

control of a file processing loop. There is a potential problem in

accurately reflecting the real workload's processing behavior. This

results from the fact that in addition to controlling the number of

I/0 activities initiated, the size of the data block transferred

each time must also be specified. Data on the real workload's resource

demands is generally not available at the required level of detail

from system accounting logs. It can be obtained by using a monitor,

as was mentioned in Chapter III.

Another type of I/0 activity which must be controlled in virtual

memory systems is paging I/0. In a demand paging environment, blocks

of data are transferred from auxiliary storage into main memory as

required. If main memory is full, some "pages" may have to be recopied

back to auxiliary storage to make room for the next "page" copied

into main memory. Paging activity can be controlled to a certain

extent by careful program development. Techniques useful in improving

the locality of a program and thus decreasing its expected page fault

rate are discussed by Spirn [85]. Paging activity is also highly

environment dependent. Thus any significant control over paging

activity will likely have to be exerted during the calibration/

68

validation phase when the entire test workload is available.

Direct control can be exerted over many of the system resources

through inclusion of loop control parameters and proper job control

statements. An example of the use of parameters to control the various

system resources is included in the case study of Chapter VI.

5.5 The Design of Calibration Experiments

It is necessary once a synthetic job has been designed, to

establish the relationship between the parameters of the synthetic

job and the resource descriptor variables used to characterize jobs

in the real workload. Such a process can be termed "calibrating" the

synthetic job. The procedure proposed in Section 5.5 requires that

the synthetic job be executed on the system for various parameter

settings. The corresponding values of the descriptor variables are

recorded for each run, and regression analysis used to establish the

desired relationship. There are a number of unanswered questions

associated with this procedure. These include !iow many runs of the

synthetic program are necessary to establish an accurate relationship,

what parameter settings should be used for each run, and how to

account for the acknowledged environmental variations (see Chapter

III) in the resource demands from one run to the next. The use of

statistical experimental design techniques is proposed in this section

to assist in answering these questions.

The magnitude of the demands placed on system resources by a

given job can vary from one run to the next. Some of the demands most

susceptible to these environmental differences are CPU processing

time, I/0 processing time, and data transfer over the channels handling

69

paging activity. This variation in resource demands can have a signi-

ficant effect on relationships established through regression analysis.

Indiscriminant running of the synthetic job will yield data in which

it is impossible to separate the effect on the response variable due

to this "chance" variation from that caused by the setting of various

parameter levels.

Most of the parameters used in controlling the magnitude of the

demands placed upon various system resources by a synthetic job can

assume a wide range of values. For example, the number of times a

"compute" loop is executed is constrained only to be a non-negative

integer. Similar restrictions (or lack thereof) apply to other para-

meters. Failure to use a wide enough range of values for these

parameters will yield a predictor equation which cannot be used in

some cases. This is because it is almost never feasible to extrapolate

using a regression equation [28].

Related to the setting of the parameter levels for each run of the

synthetic job is the required number of runs. The synthetic job

could be run a large number of times (say 100) with the parameters set

at the same values. This obviously would yield a highly reliable

relationship for that particular combination of settings. The validity

of the relationship for some other combination of parameter settings

would be highly suspect.

Problems similar to those outlined above are commonly encountered

in other data analysis situations. A branch of statistics known as

experimental design [43] has evolved to aid in the resolution of these

problems. The methodology outlined for designing factorial experiments

70

[43] appears applicable to this problem.

A factorial experiment is one in which all levels of a given factor

are combined with all levels of every other factor of the experiment

[43]. Each of the synthetic job parameters to be varied can be consid-

ered as a factor in the calibration experiment. Levels for each factor

can be established which are likely to cover the required range of

resource demands. Each unique combination of factor levels can be

thought of as a "treatment" to be applied. Treatments are assigned

at random to each run of the job.

The use of statistical design techniques provides a number of

advantages in calibration experiments. They include:

(a) The randomization of the treatment to run assignment minimizes

the effect of chance environmental variations in resource demands.

(b) For a given number of factors and levels per factor, one

can precisely calculate the number of runs necessary for a complete

replication of the experiment. For example, if five factors are

present, and each can assume two levels, 25 = 32 runs are required.

The analyst can reduce the number of runs by using fractional replica-

tions. This involves confounding some effects.

(c) The significance of the effects on the resource demands by

the various parameters can be tested through an analysis of variance.

Interaction effects can also be tested, although in some cases it is

difficult to interpret such effects.

(d) Confidence limits can be established for the obtained

regression coefficients.

71

It costs no more in most cases to conduct a carefully designed

experiment than it does a poorly designed one. The use of statistical

experimental design techniques can have a significant impact in the

calibration phase. An application of these techniques is given in

the case study of Chapter VI.

5.6 Validating the Test Workload

The calibration experiments discussed in the previous section

can be used to establish predictor equations relating the synthetic

joh parameters to the resource descriptor variables. A synthetic job

mix can then be constructed by including sufficient copies of each

of the synthetic jobs with the appropriate parameter settings. It

is necessary to execute this synthetic mix on the system being studied

and to determine what degree of representativeness has been achieved.

This process can be termed validation.

A number of authors [4,32,49,86] have emphasized the importance

of validating test workloads. The general consensus seems to be that

a test workload which has not been validated should not be used. The

particular subset of the real workload which is used as a model in the

design of a test workload is selected because it exhibits some charac-

teristics pertinent to the evaluation study (i.e. heavy loading, high

paging rate, etc.). If the test workload does not exhibit the same

characteristics, the evaluation study can be severely hampered.

If the test workload does not accurately reflect the resource

demands of the real workload subset, it is likely due to

(a) errors in recording the resource demands, either because the

recording process was not accurate or because the resource demand

72

pattern was distorted (perhaps due to artifacts introduced by the moni-

toring process itself),

(b) errors introduced when the actual workload demands are

reduced to probability distributions or clusters, or

(c) errors in computing the synthetic job parameters.

Errors of the first and second type are common to nearly all

methods of generating test workloads. They can be precluded only

by exercising extreme care in those stages of the construction process.

Errors of the third type are unique to test workloads generated using

synthetic jobs. Careful design of the calibration experiments should

minimize the possibility of an error of this type occurring.

An obvious means of verifyinj the accuracy of the synthetic job

parameters is to execute the test workload, record the demands placed

upon the system resources, and then compare the resulting probability

distributions of demand clusters with those produced by the real work-

load. A number of statistical tests (i.e. Chi-Square, Kolmogorov-

Smirnov) are available for testing "goodness of fit". Errors of the

first and second type mentioned above, however, could go undetected

using this process. The monitoring process will likely introduce the

same bias when the test workload is executed as it did during proces-

sing of the actual workload subset. The same analysis package will

likely be used to summarize both the resource demands of the actual

workload and those of the test workload. Thus, the same errors are

apt to occur in both analyses.

The validation phase of test workload construction is probably

the least understood phase. There are a number of reasons for this.

73

Many studies never progress this far, since it is the last phase of

the process (although the calibration phase may be reentered if a

non-representative test workload is produced). Secondly, to avoid

distorting the demand characteristics of the test workload, it must

be executed in isolation from other jobs on the system. This requires

a dedicated system during that period of time, which is sometimes

inconvenient and expensive.

5.7 Summary

A test workload can be constructed using synthetic jobs. The

parameters to incorporate into the design of the synthetic jobs are

determined by the resource descriptor variables used to characterize

the real workload. These descriptor variables are in turn determined

by the performance variables required by the evaluation study. Regres-

sion analysis can be used to establish the relationships between the

synthetic job parameters and the resource descriptor variables.

Statistical experimental design procedures can be applied to assist

in the design of these calibration experiments. Following the design

and calibration of the synthetic jobs, a synthetic mix can be con-

structed by including the appropriate number of copies of each synthe-

tic job with the proper parameter settings. This test workload must

be executed on the system, and its resource demands compared with those

of the real workload. This latter process is termed validation.

-- p ...

74

CHAPTER VI

CASE STUDY

6.1 Introduction

A methodology for constructing a test workload suitable for use

in a performance evaluation study has been developed in Chapters III,

IV, and V. This chapter illustrates this methodology with a case

study of the primary computing system at Texas A&M University.

A brief description of the present system configuration begins

the study, followed by a description of the system workload in terms

of gross workload characteristics. Succeeding sections illustrate

the application of techniques to

(a) express the selected workload subset as a resource demand

matrix;

(b) transform this demand matrix through suitable scaling and

principal component analysis;

(c) summarize the workload subset using a clustering strategy;

(d) design synthetic jobs to replace the real jobs reflected in

the selected workload subset.

This study is not directed toward measuring any particular aspect

of the system's behavior. Rather, its aim is to demonstrate a proce-

dure by which a drive workload can be constructed. For this reason,

75

there is a degree of arbitrariness in some aspects of the study, parti-

cularly in the workload subset which was selected. The selected

subset does not exhibit any particularly outstanding feature; it was

selected more or less at random. In an actual performance evaluation

study, considerable care must be taken in selecting a workload sub-

set which provides an appropriate environment for the study.

6.2 System Description

The Texas A&M University Computer Network is a centralized

network with the Amdahl 470/V6 at its hub. Access through remote job

entry (RJE) is possible from a number of locations throughout Texas,

including Amarillo, Austin, Brenham, Galveston, Prairie View, Stephen-

ville, Temple, Tyler, Texarkana, and Waco. In addition, four remote

computing centers are dispersed about the main campus of Texas A&M.

The Data Processing Center (DPC), which operates the network, acts as

a centralized data processing facility, providing data processing

services in support of the academic, research, and administrativ'

functions of the university.

The Amdahl 470/V6, which was installed in late 1975, is the

central computer. It is supplemented by various mini/micro computers

which assist in data reduction and provide an opportunity for "hands-

on" instruction. The 470/V6 is presently equipped with six megabytes

of main memory, a sixteen kilobyte cache memory, and has a cycle speed

of 32.5 nanoseconds. Sixteen data channels (O-F) are provided. These

I/O processors are currently assigned as follows:

. -

76

Channel 0 - Unit Record I/0

Channel 1 - 8 CALCOMP 3330 Mod I compatible disk drives

Channel 2 - Unit Record I/O

Channel 3 - 12 CALCOMP 3330 Mod II compatible disk drives

Channel 4 - COMTEN 3670 communications control module

Channel 5 - 12 CALCOMP 3340 compatible tape drives

Channel 6 - Alternate to channel 5

Channel 7 - Alternate to channel 3

Channel 8 - 80 IBM 3270 CRT terminals (IMS)

Channel 9 - Not utilized

Channel A - HASP pseudo devices (disk)

Channel B - 8 CALCOMP 3330 Mod I compatible disk drives

Channel C - Not utilized

Channel D - Not utilized

Channel E - Not utilized

Channel F - Not utilized

The system is presently operating under SVS Release 1.7, in a

HASP 4.0 environment. SVS swaps virtual memory between the disk and

real memory in 4096 byte segments (pages). TSO, the Time Sharing

Option of IBM operating systems, provides a time sharing environment

in which most functions available to the batch programmer are made

available to the terminal user. Other software subsystems available

include

(a) APL-SV - A time-sharing system provided by IBM which allows

many terminal users concurrent access to the 470.

(b) IMS/VS - An IBM program product providing data base and

p ,.*

77

data communication facilities.

(c) SYSTEM 2000 - A general purpose data base management system

developed by MRI Systems Corporation.

(d) MARK IV - A file management system developed by Informatics,

Inc.

(e' PANAVALET - A program management and security system developed

by Pansophics System, Inc.

(f) WYLBUR/370 - A text editing system developed at Stanford

University.

A wide variety of language translators are provided. Those

supported by the DPC include

(a) ASSEMBLER G - Assembly language,

(b) ASSEMBLER X - Assembly language,

(c) ASSIST - Fast student assembler,

(d) ANS COBOL (version 3) - Business oriented language,

(e) FORTRAN H (extended) - Scientifically oriented language,

(f) OS/VS COBOL - Business oriented language,

(g) PL/C - Fast PL/I compiler,

(h) PL/I Optimizing Compiler - General programming language,

(i) WATBOL - Fast COBOL compiler and

(j) WATFIV - Fast FORTRAN compiler.

In addition, language translators for ALGOL, SNOBOL, LISP, PASCAL,

and RPG are available, but are not supported by the DPC. A large

number of application packages are available, including GPSS, CSMP III,

SSP, SAS 76, SPSS, and IMSL.

78

6.3 Workload Description

The workload of the Amdahl 470/V6 is composed of five general

categories of worksteps, where in this case, "workstep" refers to an

increment of the workload. This increment could be a job in a batch

environment, or a session in a timesharing environment. These cate-

gories are:

(a) Teaching - student worksteps, and other worksteps run in

direct support of teaching,

(b) Research - worksteps related to research projects,

(c) Administrative - worksteps run to support the everyday

operation of the university,

(d) Commercial - worksteps run by non-university users,

(e) Overhead - billing programs and other worksteps run to

support the operation of the DPC.

Although the proportion of the workload in each of these cate-

gories varies, during October/November 1978, the breakdown was Teach-

ing - 58%, Research - 18%, Administrative - 6%, and Commercial/Over-

head - 18%. It should be noted that these are proportions of the

total number of worksteps processed rather than of total resource

utilization.

For this study, the workload for the period January 1, 1978 to

November 30, 1978 was examined. There were a total of 912,327 work-

steps processed during this period, which accounted for 2944.66 hours

of chargeable CPU time. The following relative frequency histograms

show the distribution of the worksteps/ CPU time over the eleven month

period.

79

Fig. 6.1 Relative Frequency Histogram for Worksteps Processed - Monthly

Proportion
of Total
Worksteps Processed

.20

.15

.TOMMY

.10.

.05.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV

Fig. 6.2 Relative Frequency Histogram for CPU Time - Monthly

Proportion
of Total
CPU Time Used

.20

.15 J 1 0io l s jj** Xiiiiiii iiiiiii~ii

. 05.::!i:::

JAN FEB MAR APR MAY JUN "JUL "AUG SEP OCT NOV

80

The structure of the histogram depicting the proportion of work-

steps processed closely follows the academic terms. The spring semes-

ter began in late January and continued through mid May; the summer

term ran from early June to mid August; and the fall term began in

late August and ran into December. The histogram depicting the propor-

tion of CPU time shows that the period of maximum utilization of the

processor actually occurred during May and August, a time of relatively

low student usage. This was caused by a heavy administrative workload

during those two periods. Grade reports are processed in May account-

ing for that "hump"; both grade reports and normal end-of-the-fiscal-

year processing account for the August "hump".

For this study, it was decided to examine a period which exhibited

a balance in the types of worksteps processed. The period selected

was a two week period, September 20 - October 3. This period should

exhibit the desired balance, since it begins approximately one fourth

of the way into the fall semester. Thus, the distortion caused by

end-of-semester administrative processing is avoided. Furthermore, it

is far enough into the semester so that student/research activity is

relatively heavy.

The workload during the period of interest displayed a strong

weekly trend. This is caused largely by the work week and operating

hours of the various remote processing centers. There was a total of

46,730 worksteps processed during the two week period, which resulted

in 127.03 hours of chargeable CPU time. The following relative fre-

quency histograms depict the distribution throughout the week.

81

Fig. 6.3 Relative Frequency Histogram for Worksteps Processed - Weekly

Proportion

f Total

.25 IWorksteps Processed

.2 0 J

StUN MON TUE WED THU FRI SATDA

Fig. 6.4 Relative Frequency Histogram for CPU Time -Weekly

..Proportion

of Total
.25 *CPU Time Used

.20

.151

10

.05j

SUN NO0N TE WED THU FRI "SAT " DAY

.

AD-AI07 257 AIR FORCE INST OF TECH WRIHT-PATTERSON AFB OH F/0 9/2
A STATISTICAL EMTHODO.OGY FOR CONSTRUCTINS SYNTHETIC TEST WORKL--ETC(U)
NAY 79 V T GRAYBlAI.UNCLAtSSIF I[D AFIT-¢ Z-79-305D-S NL.,

END

_______ I ~ 11112

140 __

11111.25 1WI 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL RRAU)I T AO[AR[> il A

.8

82

The seeming contradictions in the above histograms are caused by

student jobs. A "happy hour" period is provided from 7:30 - 9:00 P.M.

on Sundays; 12:30 - 1:00 P.M. and 8:30 - 10:00 P.M. on Mondays through

Thursdays; and 12:30 - 1:00 P.M. on Fridays during which jobs using the

student compilers are run without charge. Thus, the job counts during

these periods are abnormally high. CPU utilization is not affected

to the same degree, since these jobs are characteristically very

minimal in terms of processing requirements.

Using this profile as a guide, a two hour period was selected

as the workload subset for use in the remainder of the study. In an

effort to keep the scope of the study reasonable, it was decided to

restrict it to the batch portion of the system workload. It should be

understood that to produce a realistic test workload, the interactive

portion of the workload would also have to be considered. This analy-

sis should parallel that of the batch workload, with the two types of

workloads merged at the end to provide a composite test workload.

The two hour period form 9:00 - 11:00 A.M. on September 20, 1978

was selected, again to yield a balanced workload. This period avoids

the influx of student jobs caused by "happy hour", and is contained

within the normal workweek so that administrative/overhead jobs are

represented. There were 338 jobs processed during this period, with

170 of them compiled using the in-core student compilers (Autobatch

jobs) and 168 of them using the standard OS translators (Batch jobs).

These two portions of the batch workload were analyzed separately due

to the severe restriction in resource utilization placed upon the

Autobatch jobs.

I --

83

6.4 Analysis of Autobatch Data

There are a total of five Autobatch language translators provided

for use with small jobs which require limited I/0 support. In addition,

a subset of the Statistical Analysis System (SAS76) is provided in-core.

The resource demand patterns for jobs executed on these student-oriented

translators are very similar. Input data is through the standard input

file (card); output is either in printed or punched form; a common

region size (256 kilobytes) is used; and access to external files is

prohibited. Furthermore, restrictions are placed on the maximum CPU

time utilized and maximum output produced.

Due to the similarities in the resource demand characteristics of

Autobatch jobs, a limited resource descriptor set is adequate to repre-

sent their contribution to the system workload. The descriptor set

selected includes CPU time (.01 sec), number of cards read, number of

lines printed, and number of cards punched. Data was collected on these

four variables during the selected period. Of the 170 Autobatch jobs

processed, none punched uards. Thus, this descriptor was eliminated

from the set. This resulted in a three variable set denoted hereafter

as {Xl,X 2,X3}, where X, number of cards read, X2 = number of lines

printed, and X3 = CPU time in .01 second increments.

The 170 jobs were spread fairly uniformly throughout the period.

The interarrival time distribution is depicted in figure 6.5. This

distribution is not crucial to the analysis of this section. It must

be considered, however, when constructing the final test workload.

84

Fig. 6.5 Interarrlval Distribution -Autobatch

Number

30 Of Jobs

25

20

15

10.

5 * **

10 20 04 5D 60 7l 0 0 >100 Time (Sec)

The resource demands of the Autobatch jobs are summnarized in table

6.1.

Table 6.1 Resource Demand Characteristics - Autobatch

Xl x2 x 3

Min 4 9 1
Max 873 1328 229
Mean 129.4 162.7 18.4
Std Dev 152.4 203.9 31.8

The variables were first standardized to mean 0, variance 1. Then,

the intercorrelations among the variables were examined. These correla-

tions are sunmmarized in table 6.2.

85

Table 6.2 Correlation Matrix -Autobatch

______ l x2 X3

X 1.000 0.696 0.547
X20.696 1.000 0.758
X30.547 0.758 1.000

The standardized variables X1,X 2 1 and X3were then subjected to

principal component analysis to transform them to the uncorrelated

variables Y1 2Y 2, and Y 3. This analysis produced the following linear

relations for the composite variables.

Y= 0.55052X1 + 0.60964X2 + 0.57032X3

"'2 = 0.76719X 1 + 0.10011X2 + 0.63356X3

V 3 = 0.32915X I + 0.78633X 2 + 0.52282X3

The eigenvalues corresponding to the three principal components,

the portion of the variability in the data explained by each principal

component, and the cumulative portion are displayed in the following

table.

Table 6.3 Principal Components for Autobatch Data

Eigenvalues 2.337483 0.457655 0.204861
Portion 0.779 0.153 0.068
Cum Portion 0.779 0.932 1.000

A table similar to table 6.3 is useful in deciding how many of the

86

components to retain for the clustering stage. Due to the limited

number of variables involved, and the fact that the least significant

component (Y3) accounts for nearly 7% of the variability, no attempt

was made to reduce the dimenslonality in this case.

It is tempting when using principal component analysis to try

to attach a physical meaning to the components. Since in this study,

principal components are isolated to examine the bias caused by the

intercorrelations and give insight into possible reduction of the dimen-

sion of the feature space, no attempt was made to attach such a meaning.

It is, however, interesting to note the intercorrelations among the

original standardized variables and the component variables. These

intercorrelations are shown in table 6.4.

Table 6.4 Intercorrelations Among Variables - Autobatch

Yl Y2 Y3

Xl 0.84169 0.51901 0.14898
X2 0.93206 -0.06772 -0.35591
X3 0.87195 -0.42860 0.23664

Once the component scores were calculated, they were input to the

clustering algorithm detailed in Appendix B. The algorithm was run

iteratively for various number of clusters, and the sum of the squared

deviations about the cluster means examined to determine an appropriate

number of clusters. A plot of this measure is depicted in figure 6.6.

There is an obvious compromise to be made between obtaining very "tight"

clusters and forming the minimum number of clusters necessary. For this

1- _j _

87

data, a reasonable compromise appeared to be five clusters.,

Fig. 6.6 Plot of Cluster "Tightness" - Autobatch

Sum Of Squared Deviations
175 About Cluster Centroids

150.

125.

100

75

50

25

10 Number of

Clusters

The five clusters formed exhibited markedly different resource

demand patterns. To depict the difference, the approximate fractile

rankings of the cluster centroids were plotted on Kiviat raphs [59.

69,71]. These graphs, scaled from 0 at the center to 1 on the peri-

meter, are shown in the following figures.

88

Fig. 6.7 Kiviat Graph for Cluster 1 - Autobatch

F 6

Fig. 6.8 Kiviat Graph for Cluster 2 -Autobatch

y1

K.,..

y 3 2

89

Fig. 6.9 Kiviat Graph for Cluster 3 -Autobatch

yl

.ex

___________________ 3 *.-" 2x

Fig .10Kivit Gaph or lustr 4 Autoa-c

go

Fig. 6.11 Kiviat Graph for Cluster 5 - Autobatch
Y 1

....

Y3 Y 2

Examination of the Kiviat graphs reveals some similarity of

structure. For example, both clusters 4 and 5 are severely imbalanced

in favor of components Y2 and Y3 " Clusters 1 and 3, on the other hand,

are imbalancedin favor of components Yl and Y2 " Similarity of the Kiviat

graphs may tempt the analyst to consolidate the two similar clusters

into one composite cluster. This may be feasible in some cases, how-

ever it should be done with care. The Kiviat graphs display approxi-

mate fractile rankings, and, depending upon the variance in the

components, a slight difference in the fractile ranking can involve

a significant difference in the magnitude of the components.

The interpretation of the clusters in terms of principal components

is difficult, since no physical significance was attached to the

91

components. For this reason, examination of the clusters in the origi-

nal space is necessary before consolidation of clusters is considered.

The cluster characteristics in terms of the original unscaled variables

are depicted in table 6.5.

Table 6.5 Cluster Compositions - Autobatch

Cluster
1 2 3 4 5

Number 28 27 16 66 33
X1 (Mean) 130.36 214.85 491.00 29.71 82.64
X1 (std dev) 30.47 109.23 182.60 13.58 22.36
X 2 (Mean) 165.64 265.74 664.13 41.74 74.79
X2 (Std dev) 59.67 111.74 253.68 16.04 17.09
X3(Mean) 13.57 35.22 86.56 3.36 5.91X3 (Std dev) 9.48 15.23 60.43 1.38 3.54

Examination of table 6.5 reveals that there are indeed significant

differences in the magnitude of the demands between the "similar"

clusters. No consolidation was attempted for this reason.

6.5 Analysis of Batch Jobs

The restrictions placed upon the allowable resource demands for

Autobatch jobs are not applied to jobs using the standard OS translators

(Batch jobs). This necessitates an expanded resource descriptor set to

adequately characterize Batch jobs, since the range of the resource

demands is much broader for these jobs, both in scope and magnitude.

A set of 12 descriptor variables was selected to represent the

demands placed on the system by Batch jobs. These are

(a) Xl = number of job steps executed,

(b) X2 = total number of devices used by the job,

92

(c) X3 region size requested in kilobytes,

(d) X4 number of cards read,

(e) X5 number of lines printed,

(f) X6 number of cards punched,

(g) X7 number of pages read in,

(h) X8 number of pages read out,

(i) X9 CPU time in .01 second increments,

Wi) Xlo z I/O time in .01 second increments,

(h) X11= EXCP count issued to tape devices, and

(1) Xl2 - EXCP count isued to disk devices (excluding HASP

pseudo devices). These 12 variables represent the demands placed upon

the major system resources. They also allow discrimination between

different types of jobs, such as those which do tape I/O versus disk

I/O, or single step versus multistep jobs. An expanded feature set

could be used if desired, since reduction of the dimensionality of the

feature space is a part of the proposed methodology.

There were a total of 168 Batch jobs processed during the selected

period. The interarrival distribution of these jobs is similar to

that of the Autobatch jobs as seen in figure 6.12.

The 168 Batch jobs exhibited a widely varying pattern of resource

demands as illustrated in table 6.6.

As with the Autobatch data, the variables were first standardized,

the correlations examined, and principal component analysis performed.

These stages of the analysis are summarized in tables 6.7 and 6.8.

93

Fig. 6.12 Interarrival Distribution- Batch

Number of
Jobs

35

30

25

20

15ii
10

5
....ii!~iii0

10 20 30 40 50 60 70 80 90 100 >100 Time (Sec)

Table 6.6 Resource Demand Characteristics - Batch

Mi n Max Mean Std Dev

X1 6 1.56 1.03
X2 2 61 12.18 10.68
X3 64 512 159.24 80.76
4 5 4619 257.87 655.33

0 24979 1872.69 4771.515 0 6548 76.11 674.57
0 440 31.73 49.16X 0 384 12.43 34.58
2 12731 336.39 1193.59

X 10 0 29998 812.40 2948.55
X] 0 33028 354.67 2612.71
X 2 0 47677 1009.78 4556.96

. .. - . . , - .. _ _. _ _ _ _ _ _-_ ," -- - , - , - - - - ,

94

M- nW ' C~rC) O0 a toOQ
- a -0'Jr- M -it a0 a- 000

0OC0-f000O0; 00L L a00 00

-< a "0aC) Q a M nujcoco u- aC

9 0 9991 iC 9C T
a a C C C aa -CDa 6

0) 0 0t)r ~ 0 . L CA C Cj0

0< 000000.-0C)LnLnC,00 0 0006

00. M O -: o a -tr LO c M- o D

M a '0~ Loam"(%JeJ io wr-en

C)) C) a QQC c)

O LOCOC00 -;f 0 00 - O'U t nL 000

>< ao a a C0a00a0C0 +-) >- Q001-.

ea 0

IE--
4-' C i C; ;00 6C;C; 66 0 CJ 6-'O

4-) aONr-0CO0Oto0 M00 00 0 0 CI 00 V r

0 IA
.- ~~~~ ~~ 0or-0~~or.' U

co = .-

%Q to _S

0- 4-'
al0 '0 td O%. E00OL -. 0t

>< ><> <x <> J CL L.

95

Examination of table 6.8 shows that 96% of the total variance in

the data can be explained by retaining only 8 of the 12 components.

These 8 most significant components were selected to be input to the

clustering algorithm. The intercorrelations among these 8 most signi-

ficant components and the 12 original variables is shown in table 6.9.

Table 6.9 Intercorrelations Among Variables - Batch

Y 1 Y 2 Y 3 Y4 Y 5 Y 6 Y 7 Y8

Xl 0.40 0.47 0.54 -0.16 0.07 0.18 -0.37 0.36
X2 0.63 0.41 0.39 -0.01 0.09 0.17 -0.18 -0.46
X3 0.38 0.40 0.43 -0.08 -0.23 0.13 0.65 0.07
X4 0.01 0.17 0.22 0.61 0.70 -0.22 0.13 0.05
X5 0.22 0.15 -0.53 0.41 0.00 0.69 0.00 0.05
X6 -0.09 -0.13 -0.19 -0.66 0.65 0.24 0.15 -0.01
X7 0.89 0.25 -0.18 -0.07 0.02 -0.13 -0.04 -0.09
X8 0.83 0.25 -0.36 -0.06 0.02 -0.20 -0.05 0.16
X9 0.80 -0.51 0.06 0.09 0.02 0.07 0.11 0.06
X10 0.69 -0.63 0.17 0.02 -0.01 0.01 -0.02 -0.01
X l 0.61 -0.70 0.25 0.04 0.01 0.07 -0.03 0.02
Xl2 0.71 0.29 -0.49 -0.07 -0.01 -0.26 0.07 0.00

To determine a reasonable number of clusters to form, a procedure

similar to that used with the Autobatch data was followed. The plot

of the total summed deviations about the cluster means is shown in

figure 6.13.

Based upon the plot of figure 6.13, a reasonable compromise

appeared to be to form 10 clusters. The approximate fractile rankings

of the cluster centroids are depicted in the following Kiviat graphs.

- .

96

Fig. 6.13 Plot of Cluster "Tightness" -Batch

Sum of Squared Deviations
About Cluster Centroids

400.

350.

300.

250.

200.

150.

100.

50.

1 256 8 9 10 11 1213 14 1 6 Number of
Clusters

97

Fig. 6.14 Kiviat Graph for Cluster I Batch

Y5

Fig. 6.15 Kiviat Graph for Cluster 2 -Batch

y 5 y

y 3

98

Fig. 6.16 Kiviat Graph for Cluster 3 -Batch

Y5

V7 4

5

Fig 6.1 Kia Grp fo Clse- ac

99

Fig. 6.18 Kiviat Graph for Cluster 5 -Batch

Yl

...
.7 .. .3

Y/ ------- -------- ..

vsy

___ _
44

100

Fig. 6.20 Kiviat Graph for Cluster 7 - Batchy.

Y8 y

Y5

Fig. 6.21 Kiviat Graph for Cluster 8 - Batch
Yl

V7 Y3

Y5

101

Fig. 6.22 Kiviat Graph for Cluster 9 - BatchYl

Y 8 Y2

Y7 i 3

Y5

Fig. 6.23 Kiviat Graph for Cluster 10 - Batch
Yl

Y 8
Y 2

y y7 Y3

Y5

102r
The Kiviat graphs show a distinct structure for each cluster, thus

it is unlikely that consolidation of any of the clusters would be bene-

ficial. The cluster compositions in terms of the original variables

are shown in table 6.10.

6.6 Comparison of Clustering Results

The intercorrelation among the resource descriptor variables biases

the results of the clustering phase of analysis. Various weighting

schemes were proposed in ,napter IV to neutralize this bias. In this

section, the clusters achieved when these weighting schemes were applied

to the Batch worklodd data will be compared. Similar experiments were

conducted usitrq the itobatch data with comparable results. Toward

the end of the sertion, the clustering results achieved by retaining

the eight most significant components will be compared to those which

were achieved by retaining all 12 of the components, using the same

weighting scheme in both cases.

The Batch workload data was standardized and then subjected to

principal components analysis. The component scores (all components

retained) were then input to the clustering algorithm detailed in

Appendix B with three different weighting schemes. The first run used

an unweighted Euclidean distance metric. The second two runs used a

weighted Euclidean distance metric with Wi = 1/0'i in one case and

Wi = Xi in the other case.

It is difficult to compare the partitions achieved using different

weighting schemes since the cluster memberships can change quite

drastically. Since the aim of applying the weighting function was to

1 03

- 9 M- CD 0 I-CDo'.o C i-- .C n- w - D C>r.

- D0 to.-~ - emt .0 cov
M% CV)I Ci

M 0 -C)W D- D r*- -t M VJ C C) Ck 'J. M cM CV) UCV"

wwwrj-CC" LO CV)OcJkDM O -

M~ ~ ~ ~N CX) M0)l or-Mt L C O C V) C=) r- CV) --U DC r 0C) '.0n

- 9-

r~l CJ C) 0) \ - 0D)%C 14C DC 0) C -C C) 00 CJ 0 N- L =

r-J 0) CV) Ch)
-~ (3) M V)

cOO~~ N- (Y0 I-))V'00.

00C) U () O r0 0 M) C)4m %)U) cMO)M CJ) D

t. o :)C -::)0 JU01rY CC)M O Y D -C'J -V) C -c\J\
a4) -- OC DCi * CJC ~
4-)

(NI U) - -r 00 c D 0 i 0)
(NJ N- 4 2 CV) MV Ur)

N-) UlL k l C) NOr " -

-),CD"C - j CDJ ") U")) CDC '. CD -~ C) o CD - (J " D

ON-LC O Cl M(J O(J U000-I0 - CNJCM

(NJ Uc C 9-CC)O V)

0

(A C U) -C).rcjr C, :TM OA OOal moU)~ WNU'0 - -- '
0 nM: rEWWML Ok - - (I

0
M C n DC-C r r0C OW O-,
00m) -O.-) .c O0O0NC-mC) D o m) C OU-rl) OC) MC

I..j6c6, c cO VO VJ N(J-00L CJ0- -N-6OOO6cV)Oc
aCiR*m-r00M -L)ciR

4.3 ON OC\J -'.N-O.0cO.000-U~OO)O OCV

CD > > > > > > > > > a)- 4),K 9)a 0) a, Q, aD a,) a, a, a-'O "a V

W +J +J W 4J W 4- a, 4.) W, 44) Wa, 4.M) :)

Jo 2:- -' - - 0 0-0 1-c- (I)X:V : / J ,V

C_--_ _--_ _--- - -- - - -- - ()-. C ~

104

more or less equalize the intracluster variation in each dimension,

one way to compare the results obtained is to examine the variance

(or standard deviation) for each variable within each cluster. It

is likely not possible nor desirable to achieve true equality. This

is because of the wide disparity in the variances of the principal

component variables when all data units are considered (i.e. Var (Y) =

4.22; Var (Y12) = 0.06). It should be apparent, however, that more

homogeneous clusters are formed if the intracluster variations are

small and nearly equal.

Since the clustering algorithm was applied to the principal

component scores, any comparison made is most meaningful in the princi-

pal components space. The intracluster standard deviations for each

principal component variable within each cluster are shown in tables

6.11, 6.12, and 6.13.

Table 6.11 Cluster Standard Deviations - Wi = 1

1 2 3 4 5 6 7 8 9 10

Y .46 1.05 8.74 2.95 3.67 1.01 0.00 2.41 .55 .84
Y, .20 .75 2.43 2.09 1.74 .45 0.00 1.02 .24 .49
Y3 .24 .52 3.88 1.24 1.03 .52 0.00 1.05 .13 .40

Y .04 1.01 .32 .37 .94 .17 0.00 .48 .07 .28
Y .10 .97 .10 .59 .69 .28 0.00 .39 .10 .17
Y .10 .42 .95 .19 .73 .22 0.00 .42 .09 .47
Y .35 .30 .16 .66 .79 .69 0.00 .79 .14 .12
Y .14 .22 1.14 .28 .28 .35 0.00 .54 .16 .26
Y9 .06 .10 .39 .39 .10 .17 0.00 .32 .07 .11
Y1 .03 .20 .15 .15 .06 .07 0.00 .06 .02 .04Y'0 .02 .03 .15 .24 .08 .03 0.00 .05 .01 .04

Y 2 .03 .04 .09 .11 .03 .09 0.00 .06 .03 .03

12 -~- - -

105

Table 6.12 Cluster Standard Deviations - Wi -

1 2 3 4 5 6 7 8 9 10

Y1 0.00 3.42 3.08 2.03 1.73 1.27 13.60 5.36 .97 .84

Y2 0.00 1.08 1.32 .85 .87 .51 6.15 2.11 .73 .49
Y 0.00 1.18 2.21 1.18 .93 .34 2.05 1.27 .78 .40
4 0.00 .93 .72 .38 .84 .16 .35 .47 .24 .28
Y 0.00 .90 1.01 .39 .93 .13 .23 .30 .31 .17
5 0.00 .48 .62 .21 .50 .25 .62 .51 .29 .47

0.00 .34 .74 1.01 .57 .43 .35 1.02 .28 .12
Y8 0.00 .28 .36 .37 .08 .29 .08 .42 .18 .26
(0.00 .11 .41 .17 .07 .13 .10 .33 .08 .11
V910 0.00 .07 .05 .13 .05 .02 1.11 .09 .03 .04
V1 0.00 .03 .14 .04 .07 .03 .07 .22 .02 .04
V12 0.00 .04 .08 .09 .02 .05 .06 .04 .02 .03

Table 6.13 Cluster Standard Deviations - Wi i

1 2 3 4 5 6 7 8 9 10

Y1 .21 .42 2.74 1.01 0.00 .84 0.00 .50 .59 .85
Y2 .20 .46 2.64 1.02 0.00 .89 0.00 .49 .39 .49
3 .22 .52 2.24 .90 0.00 .41 0.00 .69 .46 .40
4 .07 1.33 .85 .36 0.00 .52 0.00 1.27 .14 .28

Y .06 1.31 1.03 .24 0.00 .58 0.00 1.12 .35 .17
.04 .47 .69 .31 0.00 .35 0.00 .45 .14 .47

V6 .29 .40 .96 .71 0.00 .40 0.00 .99 .93 .12
8 .13 .12 .81 .42 0.00 .29 0.00 .45 .46 .26
Y .04 .05 .52 .13 0.00 .13 0.00 .15 .11 .11
Y1 .01 .08 .10 .15 0.00 .26 0.00 .06 .07 .04
Y. .01 .02 .26 .10 0.00 .04 0.00 .05 .02 .04Yll .02 .03 .09 .12 0.00 .05 0.00 .05 .06 .03
12

Close examination of tables 6.11, 6.12, and 6.13 tends to

!I

106

confirm the conclusions of Chapter IV, particularly if viewed in terms

of the extreme values of the cluster standard deviations. Table 6.11,

based upon the unweighted distance metric, has a maximum value of 8.74,

and a total of 16 values greater than 1. Table 6.12, based upon the

weighted distance metric with Wi = l/Ai, has a maximum value of 13.60,

and a total of 20 values greater than 1. Table 6.13, based upon the

weighted distance metric with Wi = Ai. has a maximum value of 2.74, and

a total of 9 values greater than 1. Thus, the weighting scheme with

Wi = /Ai actually performs worse than the unweighted scheme, while

significant improvement is noted when W. = A. is used.1 1

Of particular note with this data is the manner in which the three

schemes handled outlier jobs. There were two jobs which were much

larger in terms of resource requirements than any others in the subset.

Both jobs performed an excessive amount of I/O, with one accessing tape

devices and the other disk devices. Both the unweighted version and the

weighted version with Wi = 1/Xi grouped at least one of these outlier

jobs with other data units, thus providing a very inhomogeneous cluster.
Only the weighted scheme with Wi = Ai "correctly"classified these two

jobs into two single member clusters.

Comparison of the results obtained with a weighted distance metric

(Wi = Ai) when 8 and 12 of the principal components are retained indi-

cate very little change. Of the 10 clusters obtained with 12 compo-

nents, 5 of them remain intact when only 8 components are retained

(including the two "outlier" clusters mentioned above). There are

but minor changes in 4 of the 5 remaining clusters. The lone cluster

which changed drastically was a small cluster (9 data units) in which

-~ - - - ----- - -

107

even minor alterations in cluster membership can have a dramatic effect

on cluster characteristics. In all, 15 of the 168 data units migrated

(i.e. changed clusters) when the four least significant components

were dropped. This performance is somewhat related to the weighting

scheme used. Similar experiments were conducted using the unweighted

distance metric and the weighted distance metric (Wi = 1/xi). The

effect of dropping the four least significant components was more

severe with these two schemes.

6.7 Construction of Synthetic Jobs

The construction of synthetic jobs to replace the real jobs in the

selected workload subset is the next logical step following clustering.

A separate synthetic job is generally required to represent each cluster.

There may be exceptions to this however. Two clusters may be similar

enough that a single synthetic job can be used to represent the jobs

in the composite cluster formed by merging the two. A single cluster,

on the other hand, may be too "loose" to allow adequate representation

of its members with a single synthetic job. Such a cluster must be

split into subclusters, each of which is represented by a separate

synthetic job. After synthetic jobs are constructed for each cluster/

subcluster, the synthetic mix can be formed by including the appropri-

ate number of copies of each job and appending the arrival time to each.

Synthetic jobs were constructed for one Autobatch cluster and

one Batch cluster to illustrate the design technique. The Autobatch

cluster selected was cluster 4 (see table 6.5 (p.91)), while the Batch

cluster selected was cluster 6 (see table 6.10 (p.103)).

108

Synthetic jobs designed to represent the Autobatch jobs can be

very simple jobs due to the limited resource descriptor set. Three

resource demands must be controlled: X = number of cards read, X2

number of lines printed, and X3 = CPU time used (.01 sec). The number

of cards read is exactly determined by the number of source/comment

staterilnts in the program and the number of JCL/data cards. This

number can be varied within certain limits for a given synthetic job

by either including or excluding data/comment cards. The number of

lines printed can also be exactly controlled by including a print loop

which is executed the desired number of times. CPU time used is con-

trolled by executing a compute loop a certain number of times. The

amount of CPU time is also related to the number of lines printed,

hence this dependence must be accounted for. The synthetic job designed

for Autobatch cluster 4 is described in detail in Appendix D.

The synthetic job for Autobatch cluster 4 has two parameters which

may be varied to induce various resource demand patterns. ThSse pa-,,,-

eters are NRLIN E the number of lines to be printed and NITER - the

number of times the compute loop is to be executed. The size of the

program (number of cards read) was held constant throughout. These two

parameters were used as "treatments" in the experimental design used.

Three "levels" for each "treatment" were established to cover the

range of resource demands exhibited by the members of Autobatch cluster

4. This results in nine unique treatment/level combinations. A com-

pletely randomized factorial design (32) was used to establish the

parameter settings for the nine required runs of the job. The parameter

setting for each run are shown in table 6.14.

- - .-...- _

109

Table 6.14 Parameter Settings - Autobatch

Run
1 2 3 4 5 6 7 8 9

NRLIN 50 50 50 150 150 0 0 150 0
NITER 50 5000 2500 50 2500 5000 50 5000 2500

The nine programs were run on the system and data collected which

reflected the resource demands of each program. This data is summarized

in table 6.15.

Table 6.15 Resource Demands - Synthetic Autobatch Job

Run
1 2 3 4 5 6 7 8 9

X1 33 33 33 33 33 33 33 33 33
X2 88 88 88 188 188 38 39 188 38
X3 5 77 41 9 43 74 3 80 38

The significance of the effect of varying NITER and NRLIN on X3

was then tested. Both "treatments" were found to be highly significant

(a = .0001). The model used assumed no interaction between the param-

eters. The amount of CPU time used (X3) was regressed on NITER and

NRLIN, while the number of lines printed (X2) was regressed on NRLIN.

The following predictor equations were obtained through this regression:

X2 38.238 + 0.998 NRLIN

X = 2.399 + 0.037 NRLIN + 0.014 NITER.

f1

110

The fit achieved by both regression equations was extremely good. The

value of the multiple correlation coefficient (proportionof the variabil-

ity explained) was 0.999978 for the equation relating X2 to NRLIN, and

0.999679 for the equation relating X3 to NRLIN and NITER.

Synthetic jobs designed to represent Batch jobs must be considera-

bly more complex than those for Autobatch jobs due to the expanded

resource descriptor set. The descriptor set used for the Batch jobs

includes 12 variables. A number of these can be exactly controlled

through Job Control Language (JCL) statements or the inclusion /ex-

clusion of data/comment cards. Others must be controlled through

parameters.

The synthetic job designed for Batch cluster 6 (described in

Appendix D) has four parameters which can be varied to induce different

resource demand patterns. They are NITER = the number of times the

compute loop is executed, NOUT the number of output lines produced,

NTAP = the number of records read from a tape file, and NDIS E the

number of records read from a disk file. Those resource demands which

are not affected by varying these parameters were held constant through-

out the experiment.

Two levels for each parameter were selected. A completely

randomized factorial design (24) was used to establish the parameter

settings for the various runs of the program. This design requires 16

runs to form one replication of the experiment. This was considered

excessive due to the cost associated with each run. It was decided to

use a fractional replication for this reason. A one half fractional

replication requires only eight runs, but still allows testing of the

- "----- - : "- -- " i... . .. L _ -A, a
'

-
' L

111

main treatment effects. The effect of interaction among parameters was

assumed negligible just as with the Autobatch experiment. Using the

method illustrated in Hicks [43], the "treatment" combinations were

divided into two blocks, with the four-way interaction effect con-

founded with the block effect. A coin flip was used to decide which

of the blocks to use in the experiment. The parameter settings for the

eight required runs of the job are listed in table 6.16.

Table 6.16 Parameter Settings - Batch

Run
1 2 3 4 5 6 7 8

NITER 1000 0 1000 0 0 0 1000 1000
NOUT 0 0 1000 0 1000 1000 0 1000
NTAP 0 1000 1000 0 0 1000 1000 0
NDIS 0 0 0 1000 0 1000 1000 1000

The synthetic jobs were run on the system, and data collected

reflecting the resource demands. This data is shown in table 6.17.

The values for all 12 resource descriptors are shown; those which are

not affected by the four parameters appear as constants. No attempt

was made to control paging behavior as this is largely environment

dependent.

Table 6.17 shows that five of the 12 resource descriptors are

affected by varying the four parameters. These are X5 (number of lines

printed), X9 (CPU time used in .01 sec increments), Xlo (I/O time used

in .01 sec increments), Xll (EXCP count to tape devices), and X12 (EXCP

count to disk devices). The significance of the effect of the parameters

_mob

112

Table 6.17 Resource Demands - Synthetic Batch Job

1 2 3 4 Run 5 6 7 8

X.1 1 1 1 1 1 1 1
X 14 14 14 14 14 14 14 14
X 128 128 128 128 128 128 128 128
X 240 240 240 240 240 240 240 240
X 354 351 1349 351 1349 1349 351 1349
X 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0
X 242 109 332 111 191 201 247 329
X9 188 213 212 233 187 256 257 232
X 1 10 10 1 1 10 10 1
X 1 132 132 132 217 132 217 217 217

on the descriptor variables was tested. Using a level of significance

= .05, the effect on X9 was significant for NITER and NOUT; the

effect on X was significant for NOUT, NTAP, and NDIS; the effect on

X5 was significant for NOUT; the effect on Xll was significant for

NTAP; and the effect on X12 was significant for NDIS.

The descriptor variables were then regressed on those parameters

which were identified as having a statistically significant effect.

The resulting regression equations with the value of the multiple

correlation coefficient indicated in parentheses are

X5 = 351.75 + 0.99725NOUT (R2 = 0.999997),

X9 = 110.00 + 0.1345NITER + 0.0860NOUT (R2 = 0.998648),

X oC 188.25 - O.OOINOUT + 0.025NTAP + 0.0445NDIS (R2 = 0.999903),

X1l = 1.00 + 0.OO9NTAP (R2 = 1.000000), and

X12 = 132.00 + 0.085NDIS (R2 = 1.000000).

The problem with inverting the above equations to yield predictor

113

equations for the parameter settings is that there is one equation too

many (i.e. 5 equations in 4 unknowns). The equation for X however

is seen to be redundant, since I/O time is uniquely determined by the

quantity and type of I/O performed. Inverting the remaining relations

yields the following predictor equations

NOUT = 1.00276X5 - 352.72,

NITER = 7.4349X9 - 0.6411X 5 - 592.27,

NTAP = lll.11llXll - 111.11, and

NDIS = ll.7647X12 - 1552.95.

6.8 Summary

A statistical methodology proposed for use in constructing test

workloads was developed in Chapters III, IV, and V. The major elements

of this methodology are illustrated in this chapter with a detailed

case study of the workload processed by the Amdahl 470/V6 at Texas

A&M University.

The first task in constructing a test workload is determining

a subset of the real workload to use as a model. The appropriate

workload subset is related to the particular evaluation study being

performed. An overall workload profile can be constructed, and an

applicable subset selected by viewing the characteristics displayed in

the profile. This study was not directed toward any particular evalu-

ation effort, hence the choice of the subset was somewhat arbitrary.

The selected workload subset was found to be composed of two

basic types of jobs, those using the student compilers (Autobatch)

and those using the standard OS translators (Batch). A limited

- .

114

resource descriptor set is adequate for characterizing the resource

demands of the Autobatch jobs while an expanded set is required for

Batch jobs. The two types of jobs were analyzed separately for this

reason.

The resource demand matrix was first scaled so that each descriptor

variable had a mean of 0 and a variance of 1. This scaled matrix was

then subjected to principal component analysis, to transform the

demand vectors to a space of uncorrelated composite variables. Those

component variables necessary to explain 95% of the total variability

were retained. This resulted in the retention of all three of the

component variables for the Autobatch data. Only eight of the 12

component variables for the Batch data were retained, however, reducing

the dimensionality of the problem by one third.

The principal component scores were input to a non-hierarchical

clustering algorithm using a weighted Euclidean distance metric.

Various weighting schemes were tried, with the "best" results obtained

by weighting each component variable by the proportion of the variabil-

ity it explains. The numbers of clusters to form in each case was

determined somewhat subjectively by iteratively running the algorithm

for various numbers of clusters and examining the sum of the squared

deviations about the cluster centroids. The results of the clustering

algorithm were illustrated using Kiviat graphs which displayed the

approximate fractile ranking of the cluster centroids for each cluster.

Kiviat graphs were not originally designed for this purpose. They are

useful, however, in presenting the multidimensional nature of workload

data.

iai,. __ _: ; 2 ; ,T _-.,-_, 4 "
, ,.= : , _ _. - - - - -... -

115

Two clusters, one for Autobatch and one for Batch, were selected

as models to use in the design of synthetic jobs. Following the design

of the two jobs, a completely randomized factorial design was used to

guide the collection of data and to test the significance of the effects

that the synthetic job parameters have on the various resource demands.

Regression analysis was performed to yield predictor equations for the

resource demands as functions of the synthetic job parameters.

I.

_ _ - I

116

CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Review of the Proposed Methodology

The construction of a representative test workload is an integral

part of any computer performance evaluation study. A methodology

which is proposed for use in constructing test workloads has emerged

from this research. The major elements of this methodology are

(a) selecting the workload subset by constructing an overall

workload profile and then choosing a period which exhibits character-

istics pertinent to the evaluation study,

(b) choosing a set of descriptor variables which is detailed

enough to represent the demand placed upon the major system resources,

but is not so detailed as to complicate later stages of analysis,

(c) collecting data reflecting the values of the descriptor

variables for the worksteps in the selected subset,

(d) scaling the resource demand matrix so that each descriptor

variable has mean 0 and variance 1,

(e) applying principal components analysis to the scaled resource

demand matrix and retaining only those components needed to explain

the major part of the variability in the data,

(f) clusterinq the transforied resource demand vectors in the

principal components space using a non-hierarchical clustering

117

algorithm with a weighted Euclidean distance measure,

(g) designing synthetic jobs for each of the isolated clusters

using regression analysis to obtain predictor equations for the param-

eter settings,

(h) forming a synthetic job mix by combining a sufficient number

of copies of the various synthetic jobs with appropriate parameter

settings and the desired arrival time of each, and

(i) validating the generated synthetic job mix by executing it

on the system being studied, comparing its characteristics with those

of the real workload subset, and adjusting the parameter settings as

necessary.

7.2 Automatic Generation of Test Workloads

The construction of test workloads is a time consuming, tedious

and error prone procedure. Using the proposed methodology, the major

portion of this task can be automated. Automation will release the

analyst from this tedious chore. It will also provide benefits in the

areas of flexibility, ease of modification, and reproducibility. This

section will describe the design of an automatic benchmark generator

based upon the proposed methodology.

It is not likely that the first three elements of the proposed

methodology can be automated to any degree. Considerable insight is

required to select an appropriate workload subset and to determine the

set of descriptor variables which will adequately represent a given

workstep's true demand on the system. Furthermore, the criteria

used to judge a workload subset applicable to a given study changes

118

from one study to the next. One study may require an I/O bound

workload; another study may require a compute bound workload; and a

third study may require a ba1hnced workload. It is a straightforward

task to collect the appropriate data, once the desired workload subset

is selected and the descriptor variables determined. In the remainder

of this section, then, it will be assumed that the real workload is

presented to the generator in the form of a resource demand matrix.

The arrival time of the request, possibly its originating location if

operating in a distributed environment, and a flag indicating the type

of workstep (i.e. transaction, job) are appended to each resource

demand vector.

The characterization phase of the analysis combining scaling,

principal components analysis, and clustering can be easily automated.

It is envisioned that the various classes of workload requests (i.e.

batch, time-sharing, and real-time) would be first segregated. Analysis

would proceed separately on the different classes. Some decisions

would still need to be made by the analyst. These include how many of

the principal components to retain and how many clusters to form if

non-hierarchical clustering is used. The first decision on retention

of principal components can be built into the generator. That is, it

may be decided to retain sufficient components to explain a particular

proportion of the variability in all cases. The second decision is

not so readily made, since the "optimal" number of clusters to form is

largely data dependent. There is the need for a clustering algorithm

which does not require this decision.

The next two elements of the methodology are also amenable to

--- - -

119

automation. It would require the construction of a library of general

purpose synthetic jobs. This library must contain synthetic versions

of batch processing as well as transaction oriented jobs. The appro-

priate synthetic job would be selected from this library by first

determining the type of job (i.e. batch or interactive) needed by

examining the flag appended to the resource demand vector. The required

resource demands would then be compared against those demands which

could be produced by the various library jobs. The appropriate param-

eter settings could then be calculated using previously developed

predictor equations. Following the selection of library jobs and

the determination of the required parameter settings, the synthetic mix

could be generated by considering the time and location of origin for

each workstep.

Calibration/validation of the produced synthetic job mix is

necessary to assure its representativeness. This requires that the

synthetic mix be executed on the system, and data collected on the

resources used. The resource utilization pattern for the synthetic

mix is compared to that of the original workload subset. Parameters

are adjusted, and the process repeated until the desired agreement is

reached. The details of this procedure are not clear, however it

appears feasible.

An automatic benchmark generator then would be composed of three

basic modules: a characterization module, a benchmark generator module

and a calibration/validation module. These modules are depicted in

figure 7.1.

120

Fig. 7.1 Automatic Benchmark Generator

Workload Data

Characterization

Scaling
Principal Components
Clustering

Characterized
Workload

Computer. .. . ' System

Generation

* Job Selection
* Parameter Setting
* Mixture Construction

Synthetic Synthetic
Mix Workload

Demands

Adjusted Mix

Validation

* Comparison
. Adjustment of
Parameters

IValidated
Mix

121

7.3 Major Points Originated by the Research

This study differs substantially from previous workload character-

ization studies. These differences are in the following areas:

(a) This study proposes a complete statistical methodology which

can be used to construct test workloads. Previous studies were gen-

erally restricted to a portion of the problem.

(b) This study separated the workload characterization problem

for management oriented studies from that of constructing test work-

loads. Workload subsets selected at random from a computer workload

are not likely to be applicable to the test workload construction

problem.

(c) This study examined the intercorrelations among the descrip-

tor variablesand theireffects on the clustering phase of the analysis.

Previous studies have largely ignored this problem.

(d) Principal components analysis was used to reduce the

dimensionality of the descriptor space. This is believed to be the

first application of this technique to the workload problem, although

one report [80] suggested its possible utility. Previous attempts

at reducing the dimensionality of the descriptor space have been

inconclusive and self-defeating.

(e) arious clustering algorithms and weighting schemes were

compared in this research as they apply to the workload problem.

Previous studies seemed to rely upon a given scheme with little moti-

vation for its use.

(f) A general purpose synthetic job for use with batch workloads

was developed. By varying the parameter settings, this job can perform

122

as an I/O bound job, a compute bound Job, or a balanced job. It

includes the facility for tape, disk, and unit record I/O in a s)me-

what arbitrary proportion.

(h) The appropriate parameter settings for the synthetic jobs

were determined from predictor equations obtained through regression

analysis. Statistical experimental design techniques were used to

guide the collection of data, and to allow testing of the significance

of the effect that various parameters have on resource demands. As far

as can be determined, these techniques have not previously been applied

to this problem although they are routinely applied in other areas.

7.4 Suggested Areas for Future Research

The methodology which has emerged from this research has not

been subjected to the test of time. The case study of chapter VI

demonstrated the usefulness of many of the procedures employed, how-

ever, they need to be applied to other sets of data at other installa-

tions to gain a degree of acceptance. A complete, ready to run synthe-

tic benchmark was not produced in the case study due to a need to

limit its scope. This needs to be done so that the calibration/valida-

tion phase of the procedure can be more clearly defined.

The "best" clustering algorithm found for this study is a non-

hierarchical clustering algorithm which requires the analyst to decide

how many clusters to form. This decision is somewhat subjective, and

is certainly data dependent. There is the need for a clustering

algorithm which removes the burden of this decision form the analyst.

This is particularly critical if the procedure is to be automated.

123

Development of such an algorithm would minimize the degree of human

intervention in the generation process.

7.5 Conclusions

There is the need for the construction of test workloads for use

in computer performance evaluation studies. This research has produced

a statistical methodology which should prove useful in this construction

process. The feasibility of the major portions of this methodology

was demonstrated with a detailed case study of the Amdahl 470/V6 at

Texas A&M University.

As with any statistical procedure, there are certain precautions

which must go along with the proposed methodology. Two major elements.

principal components analysis and clustering, have been the subject

of widespread misuse in the past [7]. The problem basically comes from

attaching "truth" to the results obtained from these purely mechanical

procedures. The results of principal components analysis are scale

dependent; the results of clustering are dependent upon the distance

metric and weighting scheme used. Both, however, can prove to be

effective tools if used in a sound manner [7].

... - +. _.. 7....a-r=7:-

124

REFERENCES

1. Abrams, M.D., and Cotton, I.W. The Service Concept Applied to Com-
puter Networks. National Bureau of Standards Technical Note 880
(Aug. 1975).

2. Afifi, A.A., and Azen, S.P. Statistical Analysis, A Computer
Oriented Approach. Academic Press, New York, 1972.

3. Agrawala, A.K. The Relationship Between the Pattern Recognition
Problem and the Workload Characterization Problem. Proc. 1977
SIGMETRICS/CMG VIII Performance Conference, 131-139.

4. Agrawala, A.K., and Bryant, R.M. An Approach to the Workload
Characterization Problem. Computer 9, 6 (Jun. 1976), 18-32.

5. Agrawala, A.K., and Mohr, J.M. Some Results on the Clustering
Approach to Workload Modelling. Proc. CPEUG, National Bureau of
Standards Special Publication 500-18 (Sep. 1977), 23-38.

6. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and Analy-
sis of Computer Algorithms. Addison-Wesley Pibis-hing Company,
Reading, Ma. 1976.

7. Anderberg, M.R. Cluster Analysis for Applications. Academic
Press, New York, 1973.

8. Anderson, H.A., and Sargent, R.G. A Statistical Evaluation of the
Scheduler of an Experimental Interactive Computing System. Statis-
tical Computer Performance Evaluation (Frieberger, W., Ed.).
Academic Press, New York, 1972, 73-98.

9. Bard, Y. Performance Criteria and Measurement for a Time-Sharing
System. IBM Sys. J. 10, 4 (1971), 305-324.

10. Bard, Y. The VM/370 Performance Predictor. ACM Computing Surveys
10, 3 (Sep. 1978), 333-342.

11. Barr, A.J., Goodnight, J.H., Sall, J.P., and Helwig, J.T. A User's
Guide to SAS 76. SAS Institute, Inc., Raleigh, N.C., 1976.

12. Bear, J.R., and Reeves, T.E. Workload Characterization and Perfor-
mance Measurement for a CDC CYBER 74 Computer System. Proc. CPEUG,
National Bureau of Standards Special Publication 50o-1873sp. 1977),
39-67.

125

13. Bell, T.E., Boehm, B.W., and Jeffrey, S. (Editors). Computer
Performance Evaluation: Report of the 1973 NBS/ACM Workshop,
National Bureau of Standards Special Publication 406 (Sep. 1975).

14. Benwell, N. Benchmarking-Computer Evaluation and Measurement.
John Wiley and Sons, New York, 1975.

15. Bonner, A.J. Using System Monitor Output to Improve Performance.
IBM Sys. J. 8, 4 (1969), 290-297.

16. Bonner, R.E. On Some Clustering Techniques. IBM 3. 8, 1 (Jan.
1964), 22-32.

17. Boyse, J.W., and Warn, D.R. A Straightforward Model for Computer
Performance Prediction. ACM Computing Surveys 7, 2 (Jun. 1975;,
73-94.

18. Buchholz, W. A Synthetic Job for Measuring System Performance.
IBM Sys. J. 8, 4 (1969), 309-318.

19. Buzen, J.P. A Queueing Network Model of MVS. ACM Computing Sur-
veys 10, 3 (Sep. 1978), 319-332.

20. Calingaert, P. System Performance Evaluation: Survey and Apprais-
al. Comm. ACM 10, 1 (Jan. 1967), 12-18.

21. Chandy, K.M., and Sauer, C.H. Approximate Methods for Analyzing
Queueing Network Models of Computer Systems. ACM Computing
Surveys 10, 3 (Sep. 1978), 281-318.

22. Cheng, P.S. Trace Driven System Modeling. IBM Sys. J. 8, 4
(1969), 280-289.

23. Coffman, E.G., Jr., and Denning, P.J. Operating Systems Theory.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

24. Crothers, E.G. Workload Determination and Representation for On-
line Computer Systems, ESO-TR-74-54. The Mitre Corporation, Bed-
ford, Massachusetts, NTIS-AD-779 818 (Jan. 1974).

25. Curnow, N.J., and Wichmann, B.A. A Synthetic Benchmark. Computer
J. 19, 1 (Feb. 1976), 43-49.

26. Davies, D.J.M. Analysis of Variability in System Accounting Data.
Proc. CPEUG, National Bureau of Standards Special Publication
5--41 _(Oct. 1978), 243-253.

27. Denning, P.J., and Buzen, J.P. The Operational Analysis of Queue-
ing Network Models. ACM Computinq Surveys 10, 3 (Sep. 1978),
225-262.

* .A.. -. " ' - " " . . . ,'J-

126

28. Draper, N.R., and Smith, H. Applied Regression Analysis. John
Wiley and Sons, New York, 1966.

29. Drummond, M.E. Evaluation and Measurement Techniques for Digital
Computer Systems. Prentice-Hall, Englewood Cliffs, N.J., 1973.

30. Fangmeyer, H., Gloden, R., and Larisse, J. An Automatic Clustering
Technique Applied to Workload Analysis and System Tuning. Model-
ling and Performance Evaluation of Computer Systems (Beilner,
H., and Gelenbe, E., Ed.). North-Holland Publishing Company,
Amsterdam, 1977.

31. Ferrari, D. Workload Characterization and Selection in Computer
Performance Measurement. Computer 5, 4 (Jul./Aug. 1972), 18-24.

32. Ferrari, D. Computer System Performance Evaluation. Prentice-
Hall, Englewood Cliffs, N.J., 1978.

33. Flynn, M.J. Trends and Problems in Computer Organizations. Proc.
IFIPS Congress 74 (1974), 3-10.

34. Fuller, S.H. Performance of an I/O Channel with Multiple PaginQ
Drums, Proc. First Annual SICME Symposium on Measurement and
Evaluation (Feb. 1973), 13-21.

35. Gibson, J.C. The Gibson Mix. IBM Tech. Rept. TROO.2043. IBM
T.J. Watson Research Center, Yorktown Heights, N.Y. (Jun. 1970).

36. Gnandesikan, R. Methods for Statistical Data Analysis of Multi-
variate Observations. John Wiley and Sons, New York, 1977.

37. Graham, G.S. Queueing Network Models of Computer System Perfor-
mance. ACM Computing Surveys 10, 3 (Sep. 1978), 219-224.

38. Graham, R.M. Performance Prediction. Software Engineering: An
Advanced Course. Springer-Verlag, Berlin, 1973.

39. Grenander, U., and Tsao, R.T. Quantitative Methods for Evaluating
Computer System PErformance: A Review and Proposals. Statistical
Computer Performance Evaluation (Freiberg, W., Ed.). Academic
Press, New York, 1972, 3-25.

40. Gross, D., and Harris, C. Fundamentals of Queueing Theory. John
Wiley and Sons, New York, 1974.

41. Hansemann, F., Kistler, W., and Schulz, H. Modeling for Computer
Center Planning. IBM Sys. J. 10, 4 (1971), 305-324.

42. Hellerman, H., and Conroy, T.F. Computer System Performance.
McGraw-Hill, New York, 1975.

- 1l~

127

43. Hicks, C.R. Fundamental Concepts in the Desig of Experiments.
Holt, Rinehart and Winston, New Yo-T, 1973.

44. Holberton, F.E., and Parker, E.G. NBS FORTRAN Test Programs,
National Bureau of Standards SpeciaTTublication 39 (Oct. 1974).

45. Hughes, J.H. A Functional Instruction Mix and Some Related Topics.
Proc. of the International SYmP. on Computer Performance Modeling,
Measurement and Evaluation (Mar. 1976) 145-153.

46. Hunt, E., Diehr, G., and Garuatz, D. Who are the Users? - An
Analysis of Computer Use in University Computer Centers. AFIPS
Proc. SJCC 38 (1971), 231-238.

47. IBM Corp. System Management Facilities (SMF) IBM System 360
Operating System Reference Manual No. G2M8i-712- -- at-a-tlro-
cessing Division, White PlaTn-s, N.Y. (TI71TT

48. IBM Corp. OS/VS Service Aids Manual No. GC28-0633-1. IBM Data
Processing -vTsion, WhitePlaTns, N7Y. (172)

49. Johnson, L.A. Validation-All Important in Benchmarking. Proc.
CPEUG, Nationel Bureau of Standards Special Publication 500--
(-Sep. 1977), 75-.

50. Johnson, S.C. Hierarchical Clustering Schemes. Psychometrika
XXXII (1967), 241-254.

51. Joslin, E.O. Applications Benchmarks: The Key to Meaningful
Computer Evaluations. Proc. ACM 20th Nat. Conf. (1965), 22-37.

52. Joslin, E.O. and Aiken, J.J. The Validity of Basing Computer
Selection on Benchmark Results. Computers and Automation 15,
I (Jan. 1966), 22-23.

53. Karush, A.D. Benchmark Analysis of Timesharing Systems AD 689
781. Systems Development Corp., Santa Monica, Ca. (1969)T

54. Kendall, M.D. A Course in Multivariate Analysis. Hafner Publi-
shing Company, New-Yo-rT,-T957.

55. Kernighan, B.W., and Hamilton, P.A. Synthetically Generated
Performance Test Loads for Operating Systems. Proc. Ist ACM
SIGME Symp. on Measurement and Evaluation (Feb.T_-3),-T2T726.

56. Kimbleton, S.R. Performance Evaluation-A Structured Approach.
AFIPS Proc. SJCC 40 (1972), 411-416.

57. Kleinrock, L. A Continuum of Time-Sharing Scheduling Alqorithms.
AFIPS Proc. SJCC 37 (1970), 453-458.

128

58. Kleinrock. L. Queueinj Systems, Vol. I: Theory. John Wiley
and Sons, New York, 1975.

59. Kolence, K.W., and Kiviat, P. Software Unit Profiles and Kiviat
Figures. Performance Evaluation Review 2, 3 (Sep, 1973), 2-12.

60. Kumar, B. Performance Evaluation of a Highly Concurrent Comput-
er by Deterministic Simulation. M.S. Thesis, University of Illinois
(Urbana-Champaign), 1976.

61. Kumar, B., and Davidson, E.S. Performance Evaluation of Highly
Concurrent Computers by Deterministic Simulation. Comm, AC
21, 11 (Nov. 1978), 904-913.

62. Lasseter, G.L., Chandy, K.M., and Browne, J.C. Statistical
Pattern Based Models for CPU Burst Prediction. Proc. Computer
Science and Statistics: 7th Annual Symp. on theT-terface
(Oct. 1973), 123-129.

63. Lindsay, D.S. A Study in Operating System Performance Measurement
and Modeling. Ph.D. Thesis, University of California (Berkeley),
1975.

64. Lucas, H.C. Performance Evaluation and Monitoring. ACM Comput-
ing Surveys 3, 3 (Sep. 1971), 79-91.

65. Lucas, H.C. Synthetic-Program Specifications for Performance
Evaluations. Proc. ACM 25th Nat. Conf. (1972), 1041-1058,

66. Mamrak, S.A.,andAmer, P.D. A Feature Selection Tool for Workload
Characterization. Proc. 1977 SIGMETRICS/CMG VIII Performance
Conf., 113-120.

67. Mattson, R.L., Gecsei, J., Slutz, D.R., and Traiger, I.L. Eval-
uation Techniques for Storage Heirarchies. IBM Sys. J. 9, 2
(1970), 78-117.

68. McKinney, J.M. A Survey of Analytical Time-Sharing Models. ACM
Computing Surveys 1, 2 (Jun. 1969), 105-116.

69. Merril, H.E.B. A Technique for Comparative Evaluation of Kiviat
Graphs. Performance Evaluation Review 4, 1 (Jan. 1975), 1-10.

70. Mohr, J., and Agrawala, A. A Markovian Model of a Job. Proc.
CPEUG, National Bureau of Standards Special Publication 500-41
(Oct 1978), ll-T8. -

71. Morris, F.M. Kiviat Graphs-Conventions and Figures of Merit.
Performance Evaluation Review 3, 3 (Oct. 1974), 2-8.

129

72. Morrison, D.F. Multivariate Statistical Methods. McGraw-Hill,
New York, 1976.

73. Noble, B., and Daniel, J.W. Applied Linear Algebra. Prentice-
Hall, Englewood Cliffs, N.J., 1977.

74. Nolan, L.E., and Strauss, J.C. Workload Characterization for
Timesharing System Selection. Software-Practice and Experience
4, 1 (Jan.-Mar. 1974) 25-39.

75. Nutt, G.J. Tutorial: Computer System Monitors. Computer 8,
11 (Nov. 1975), 51-61.

76. Oliver, P., Baird, G., Cook, M., Johnson, A., and Hoyt, P. An
Experiment in the Use of Synthetic Programs for System Benchmarks.
AFIPS Proc. NCC 43 (1974), 431-438.

77. Rose, C.A. A Measurement Procedure for Queueing Network Models
of Computer Systems. ACM Computing Surveys 10, 3(Sep. 1978),
263-280.

78. Rosen, S. Lectures on the Measurement and Evaluation of the
Performance of Computing - stems. SIAM, hiladelphia, 1976.

79. Scherr, A.L. An Analysis of Time-shared Computer Systems, MIT
Press, Cambridge, Ma., 1967.

80. Schroeder, A. How Multidimensional Data Analysis can be of Help
in the Study of Computer Systems. Proc. CPEUG, National Bureau
of Standards Special Publication 500-1 (OcET-Tg7T8,149--5.

81. Schwetman, H.D., and Browne, J.C. An Experimental Study of
Computer System Performance. Proc. 25th ACM Nat. Conf. (1972).

82. Shemer, J.E., and Robertson, J.B. Instrumentation of Time-
shared Systems. Computer 5, 4 (Jul./Aug. 1972), 39-48.

83. Shope, W.L., Kashmark, K.L., Inghram, J.W., and Decker, W.R.
System Performance Study. Proc. SHARE XXXIV 1 (1970), 439-530.

84. Smith, A.J. A Performance Analysis of Multiple Channel Control-
lers. Proc. 1st ACM SIGME Symp. on Measurement and Evaluation
(Feb. 19-73T, 37-46.

85. Spirn, J.R. Program Behavior: Models and Measurements. Elsevier
North-Holland, New York, 1977.

86. Sreenivasan, K., and Kleinman, A.J. On the Construction of a
Representative Synthetic Workload. Comm. ACM 17, 3 (Mar. 1974),
127-133.

.

130

87. Strauss, J.C. A Benchmark Study. AFIPS Proc. FJCC 41 (1972),
1225-1233.

88. Svobodova, L. Computer Performance Measurement and Evaluation
Methods: Analysis and Applications. American Elsevier, New York,
1976.

89. Tim, N.H. Multivariate Analysis with Applications in Education
and Psychology. Wadsworth Publishing Company, Belmont, Ca.,
1975.

90. Winder, R.O. A Data Base for Computer Performance Evaluation.
Computer 6, 3 (Mar. 1973), 25-29.

91. Wood, D.C., and Forman, E.H. Throughput Measurement Using a Syn-
thetic Job Stream. AFIPS Proc. FJCC 39 (1971), 51-56.

92. Wright, L.S., and Burnette, W.R. An Approach to Evaluating Time
Sharing Systems: MH-TSS A Case Study. Performance Evaluation
Review (Jan. 1976), 8-28.

131

APPENDIX A

This appendix describes a computational procedure for representing

an mxn data matrix X in terms of its principal components. This pro-

cedure was utilized to express the scaled resource demand matrix in

terms of uncorrelated variables to preclude the biasing of clustering

results, and to allow a reduction in the dimensionality of the data

matrix as a prelude to clustering.

Let X {Xij) be an mxn data matrix, where Xij represents the

value of the j variable for the iMh data unit. Since, at least in the

workload characterization problem, the variables are expressed in

widely differing units, the data must be scaled to commensurable

ranges. Assume that the elements of X have been standardized so that

each variable represented has mean 0, variance 1.

The variance-covariance matrix for the scaled data matrix X is

given by

S - - {S. .}. Since the elements of Xm Ij

were standardized, S is the correlation matrix of the original variables

in X.

Now, define a new variable Y as1
n

Y1 = F Bi Xi where the Xi, i=l ... n,
i=l

are the original variables, and Bi, i=l, ... , n, are coefficients to be

determined. The row vector of coefficients B could be defined in a

-.° _

132

number of ways, however the principal component solution requires that

the variance of Yl be maximal [7]. If the data matrix is evaluated in

terms of the new variable Yl' the column vector Yl 1 (YlIY21Y 31..Yml)T

given by Y1 = XT would result. Then
& T& TTT.

Var(Yl) = Ym m BSB

By choosing the elements of B large, Var(Yl) could be made as large as

desired. Generally, the convention that BB = 1 (i.e. B is of unit

length) is adopted. This constraint can be linked to the objective

function using a Lagrange multiplier p. Then, a value for B which

yields maximal variance for Y1 is found by differentiating with respect

to B and setting this derivative equal to zero. Thus

d [BSB + _(l _ AT)] 2 "T - 2 0AT =

dB

To yield maximal variance for Y1 one must choose the vector B to

satisfy [S - pl] BT B 0. This is an ordinary eigenproblem. Then,

the vector B is one of the eigenvectors of the matrix S. It is

easily shown [7] that in this case, B is the eigenvector corresponding

to the largest eigenvalue X1 of S. The variable Y1 thus selected is

called the first principal component of X.

Using a procedure similar to the above, it can be shown that the

second principal component of X is produced using the eigenvector

(selected orthogonal to BT above) corresponding to the second largest

theigenvalue of S. Likewise, the third, fourth, ..., n- principal

components are obtained using eigenvectors associated with the third,

fourth, ..., nth largest eigenvalues of S.

Once all principal components have been determined, a matrix of

133

principal component scores can be computed by the matrix equation
A~ JA& AA

Y = XP, where Y is the matrix of component scores, X is the standardized

scores, and P is a matrix of coefficients formed by placing each of the

eigenvectors determined above as a column in P (the vector corresponding

to the first principal component is the first column, etc.).

Since calculation of principal components is basically an eigen-

problem, it is easily attacked using standard matrix manipulation soft-

ware available at most computer installations. The facilities provided

by the Statistical Analysis System [11] were used to isolate the

principal components and compute the component scores for the workload

data analyzed in Chapter VI.

F

134

APPENDIX B

This appendix details the clustering algorithm used in summarizing

the real workload subset. The algorithm is the convergent k-means

approach discussed by Anderberg [7], and the program developed is

modeled after source listings contained in that reference.

The convergent k-means approach involves three basic steps [7].

These are:

(a) Begin with an initial partition of the data units into

clusters. This initial partition can be arrived at in a variety of

ways. One way is to select k of the data units as cluster centroids.

These k units can be selected at random, the first k units of the data

set used, or some other technique employed. The remainder of the data

units are then assigned to the "nearest" cluster, with the cluster

centroid remaining fixed throughout the initial pass through the data.

Once all data units are assigned to a cluster, the centroid vectors

are updated to reflect the current cluster memberships.

(b) Take each data unit in sequence, compute the distances to

all cluster centroids, and reallocate the data unit if its parent

cluster is not the "nearest" cluster. In the event of reallocation,

the centroids of both the gaining and losing clusters are updated.

(c) Repeat step (b) until a full pass is made through the data

set with no reallocation of data units among clusters.

135

The convergent k-means algorithm described by Anderberg and

implemented for this study consists of a main program (driver) and five

subprograms. The logical relations among the elements are depicted in

figure B.l.

Fig. B.l Logical Program Linkages

DRIVER

EXEC

KMEAN RESULT

T

USER DIST

The main program (DRIVER) simply assigns main storage, and then

invokes subroutine EXEC. This subroutine checks that sufficient main

storage has been requested and then invokes subroutines KMEAN and

RESULT in turn. Subroutine KMEAN is the heart of the algorithm. The

136

data units are read in, standardized and expressed in terms of principal

component scores through repeated calls to subroutine USER. Clustering

is then accomplished with distance measures between data units and

cluster centroids obtained through invocation of function DIST. Once

clustering is achieved, subroutine RESULT is called to output the

results.

There are a number of decisions which must be made by the analyst

prior to using this algorithm. These include how the initial partition

is arrived at, how many clusters are formed, and what measure o'

distance is used.

For this study, the first k data units were used as the "seeds"

of the algorithm. This choice was made for lack of a decidedly better

alternative. Some experimentation with other techniques was done,

however, the results did not consistently favor one over the other.

Thus, the easiest and most straightforward approach was taken.

The particular implementation of the clustering algorithm used

in this study is shown in the following source listings. The listings

contain liberal comments on the different logical stages, rendering

further explanation unnecessary.

137

z z =Mci,
0 go E-Ix a -4
Hl 0 z F- cr w z

E4 in czMc

go 0 94N
1-4 ~ ~ ~ O U 0 Q E'.

U C N0 E-4~ UZ

.40 w E-0 u bi 0e a Z

0A N .4 W - 0 H0
E-4 N 3a0 -

F0)M0 N E ~00H
uoH 44 -- u s n I

fiN1 z 0D-Z C0O z0m.

M ~0H . -E-i -c c. "O ew

C ON .4 0- P~C oI0 E4-4 E .4 ,

HO Vr40 0 w .E-4 M H " M H -
(n z -* W N~0 ==0 E-'H z4E4

.4) P!- H.E 0 z 6-4 0 O4 HU c *-I
m tn 0Hfl E4 0 .0 E0. izC4I- C W c

N -N E-4 OO H H >VCNm m=z=mC
NE3 Z PC 0E-i Z t1-4 1ll Ent VL-F4 me .Z -4 N

PQ0 * P 4MC E- UI- -O 4 M0011

0 Ef- X - * 000 m = w zH E- f-.
a n wl E4 t3 U.EE EOCL wH E-4

H PC~ m M MM W HE- W XH. Oc P
cn ()Z z w V lzH PC .N N N O Q PApzE4 w a

C" r F-% 0 imE-4 0 gr MM C11-J4 PO
Jv~i- b4 O m ME H 1.4 gos.z IID r

OV) Hn 00) 4 - E-- F-4 1111 11 H0 z A
E UNO0 0 PC U) pa m4 04 ftl 43tm.u E.4 -- H- 1

L)OW 0 H N zou UwwEZMZ lc H
meVCD u'n .4 H0 1-4 0-2.44-c

S- ~ ~ ~ N W % P .4e,.c .3 l. F4M I0ULf) 0 tfr
o w0 H4 x ME. Ic 4 OAc CN(04

W3 M w C> 0 w 0 U UE-PeOlin'-i I I I
tw *cc4. " C>U z w M H w I f'~- . -
H P 0- OO0N H en .4= .n,1 I r- - N (N Fn

mu. 0n Ue4 H tn~., b4 C- .4)

zn. EH4 0 u ig [A - 64 0~0 0OO 0 04
PQ-Y(EE40 I-40 OJ OU UU w U

EM04UN f 00.4 z H Uz09m

LL-

1 38

-2H c

.4 C 4 14 z 0
u 4 w H1- . F-4

02441- F4c 4 4 0 wH
1-0 p

4 0- 4m 4 ON
40u U C E E-4 - E4 z

CJ H E3 W W rH cc)
0 mc z Z:0 00 4 4

&4w -4 H 04
U w -4 ow 44WI 9

w 0cW: 0 -a -4 U-) 1-4
> 91 4 O 4 w1 9'4 Wz z H-

(n =w wm w- 1-4

w* C -E-444-C1ad 4 H o H %

u E-4 m m 0 0 0 0 % % -

IZ~ 1 E_ E- - - -

-C U) n :1 0 0 K

E-4'M H L) - m -
0oV)U)0 w W% E-4

0:cr I H H DO

1-F -4 cO0 PZ0 H- E-4 SC
W C I 0 Dc C> Z2 z P

PC * *~ % 1 P
0 H U U PLU P' U L) H- H r(N z

EnI A % % a ~ 1-4- 1-4 C *_

Z U N- - r- w Z - b4 F*

i- 4
0 0 0 000' E4 - D4 b-- -i-' -C IIE

4- '-4 N0-'4% M~ -- * %H I- 4F4r

oz zz z Z EH-4 E LD i liii c Ii

U PI U -C
lb W*x1<b4 C r -

c000000 00O 000 - z Z Z IJgZm

1 39

(N

z H Ec 1.4 W4

z 0.. 1-=

H b 0z ~ 00 u '-

E- E-4 1-4 CzL4 o F-4
W ~~ 0E F4w -
u 040 - - I

%U' V) 1-ztI 0* Q & w
E-4HW tH .4 0E4 04

HHs Q F.-4 ..J H '0-C HC1

o- P- 0 o- H E-. w
00400 m- HE 4 i-o 04 m

Z ~ 0 E 04 E-4 z o - oo
PC cz c c 4 PC H - oPI

U lowO E-4E4 a cH L)= -

z H 0c ta 0'E' -C 0oc E4 =

pqu 1 4(Z~I4 c0
Z- Z F4.

040 cn- P H H

'N) 0) X: E-4 M-A0 : 1 = E 4 E-4

0a1- %-- 41 1- 0 U M)
M-H .- I- E-4 .0 =- H W M 0O V

11D -N00 .4m 10. CO lb -en U0 H -H - H t"-
u41 0- Ic 0 U 0 r- ztLE4 f-s E-

0 z 0 0 . EH4 H t- 4 -4 0. UV.- PC. H -
z rSJ ~4 = H -4H M 0 Z M = En c E- t E -
H EnO E- CoWE 0IN. = E I-5i v0 C/) M o

.4 3cII z' H b = 0 u I= POIU 0 30 ao - -
noZ ro go z m or-4 N II I C w(N r *(L

A3444. 1 . W L)s-4 0EE4 rA m/CjF. CL s H E-- w a to 0 I

4-' CP W F-4 C/) 1-40 U = 1-s - F-4~U ~
0- H F- z - wU iq * zuE

%0D0 4O Aw 4 D
0000 c 0 W 4U4+D f

(NJ 0000 r 0 cH HzNwr -4C4 e 00 (N ZsC W E4 . : a0i
-- %((N 0000 a =En 140000D0-4P-41 0 0M0

ol 0 1= 0 0C znub -b
0 -U-c z M c c '

140

U) -4
AV0

uH

o W:

czI Uz

E-4 w- E-4 0 -

0 L -) IIC u' Em
EH =I = L V

u- gI c E-

a U) ~ E4o
O~0 0 = Ha 00 n O 0

F- 4 I 0 " %-4 a-4 w4 00% w H

z- CD 1- 3r- Nc

'~0 E-4 eIA ft ::o 0> w 9w0 -

Hi moi) ~ 0.a E-4 P - - 0 C-

1-4 -C-. H H -.c14 C o

H tn) 0 0 ~ -00 0~~ 04 U) 0

-W 1-4 k-4 ~ ' bE-4 in It % 0a Hs) H

uZ uu uu t orJe'. '-Zuu 0 u-

a 0

04

EU w
.4 0

0 W a a

H

2 HU V)s

041 PH =c
a a 2 0 0 C

M- IQ V24

0 DoM: - -

0-4 In POE

E-4 In 0 - '

E-441 H 1H -4 w. E-
1-4 k!L 0 U-I.13

*-i' ad E-. 4 ILI

a 0 4PawE
fo- p PQi~ a F-

me Ac E4 2 H U
ow 0 -4~ In a

CA a t*3 a.- H a

H %H~U o3- 01-4 2 C)1 it ril)

0z*r - O=1
MU UUq-p Eu a 0 If~ V- JU w 11)

42

1.P4
Hu

0- 0 A
In.

03
Uo

z Hc

o to
W N'

H U

U, - 0no
o0 w_ - WE4V

w U H wH

Hz -0 0 -.
NO4 0 .4 -4 1-4

bd - dN
-- I- 1-4 -

on HF 2= In 01

rU3 0 OU chNE4c

U U 0 1-4 IN * 0 Nq 1-4 U I

E- f.DWE-4 0 ow -nI w- N- n pa

H- z = 0 E4 M g.4 P) W W. H =CO SI
0 +h N 2 11 W C3~ II z' 09 24w +

1 C-4.4 -4 11 11H U 2u n'1- OH O I" ~ 2 i oC

1-4 In" n0 uCkE4 0 Ul Wl~~.4- 2 In CDZ 1
11 ipN 9404zN2s w4 2 11 11 11 942 o il U il1 3-' 1 l

N- f O-.111D 0 4 u w 1-" 0 i0 Ue OF-
C
0

Cu UUL ru uU Lf UUUlo UUU

143

0

-4

0

E-

CE-4

u l

va 0

11-9

bd I-I
ca,

cnz E.
+ CDJ

I-- HP

w cr. 0

04 Ho 00
to 0 t 0 0 0- u -

0 pa m H c

1-4 N H~l 11i

-.4 0 CD Do M tP

I-+ 1- Z L Z o I4 + 1-
+ = H 0V 0 HH 01 9z H H) L)q

n HW O V- 0 E- M 4D00NP E-4 F-4 (0 C)V ,

kc .ic I -4 w i '-0 H 4 a 0 C0H 0 11 1 f l

StIl - 0 * 0 -4W*0 Z Ad w 00i 0 0+NN
w 3c w a n F-4 4 1a4 u H 0SCU16 0 0"4 ' in .

coii u uu o UUUVcUUCJ- Liuiu Liu

144

M

u

00

0:W

E-4

u
5.4 5.4

- rq

'*~ z CD0 0 b
1-4 H- 0 c : -C

E-4 H' - 1-4 w 10 l
m oc wO 0 aO.0o=

~ .- 0 P 1,3--

5.4 En U 4 =~C =N E an CD D.a 45- o
~a U z 0 +0 + p M 0000

m . ga 4 0 * V I % 14 E- 4 -
oc r aM9 cat~- N e b It tw V~ wI 11 11 11

5. -54 11 tn eN In H- 0 1-4 tw %- - w 1 1 It

H H X a tn [4 IM s-biw U wm3-Pjww I - - P - -
InV- I 0 +11 040 W.1 Q+ 0 11 w N 4 - %

-v 11 NE4P 11 11 " 1I~b4I4f W 4 0w0==p. l)0r 4w1
a.' o IL, S-i n'C 0 wA H0 .4 m -I - 2p wo -

go tA itN N w N a 0- t o w1 ic = mit 1 it it if CI- .
IM0Nt w 0 0 a L4- 0 N0 o"M-omoo

C;

U-

145

1-4

- N 0

z *4

0 .4z H

20 z4 0

0 0 w E-4

m 1- U H .4 H0
fltc 0 E4~ E-4 O -

z. bcp E -4 V
U C) H on ft

001.If 1- 0 U
D4 M 10 Ow HW U0 Im

0 0 0 0 OC -4 H 00 04 ad

0 ~ H 0 OX:~U
0 go 0 W. r- a

0 cn 0. ad) m V)
44. w- wb 44 X: E-42 w I-d

F- H H t 02 a v=H W; H6

pat Cl) U.-gIf pa z go) go 2L)

1-PC H4 p2UC~
0 -1-4 Do H00HC D P
%- m0C. K: u HOI 0 m 2 tc CD W f1

p EA~ m I c0 *2 14 U) ImtoE- w h
w Md 0 w m 2 0 - 0 t2 PC w-l P4

2- dcl 0- H20 F4) rr4 2 0 C24V)b
2c m a-4 tn M)--t e4 CN E4) 2 E-2 0 w

% Do W 0 no H no U 1- 2 v
0 n 0 2 00 w Il0 -1 0 U K HO n cc

N4 N w a0 1 d~ IZt 2-s c1-4 1.4 M U m E- w E
O- 91 IMN* H4 94 w 0 -4 r'P- ac 0 PC H2400

0 z o 0 41 C =-ff H C, W 0: tE-'EC

Cl)m wm n a H Z It Do 0 -
u m4 0 ~ .H L 2 H24 2 H2 - c

H 000 W -.M~ HO OH % :D4 ju E 000
r. o 0/) 0 = MIO 0w.. - % 0 U 0- w-00

pa w 4 %MI N qCI9 . - - 4W NT -I H coH 0 IM0
CD o 1-4 'Dd Z w 1 -4 in Hm1- 0 %D kc

IN22 11 to-I [-E-4 f-4 0 P E F -41 [.-.1~ E4 M w m
- HH WuOO444 Oca cPC0 0 C-4 2 w 1)

a 1-43 1-E4 -4 E E 22 22 w w/U = w C-cw 'i ic a w F 14 15-
n2 = 4 H C- 0=wa w2.U 22 2 2 02 HO 6- 2 H HHH -

00 P4 w Owb0 0 00 ~0 000000220I =. H 1- =wc

4-' ~ ~ ~ C UU a ~ C)0.l.. 0. a ~ / 0

a~ 0 a000C 0 00
UO Ow- c r-

II-A-

146

H

MI 4
E-4

14

E-4

I-..

14 mH -

0 11- IN smK -w 1 a _ - =I

C-4 4 05 U - 1 2 r- H I CC -01 No F E-
wCf as pe 1 P13 ID 1 0 ai OP c0 m 0 p

IN9- un w pl a=0 U H FN4 so0 U0I '

z 1 nIlp n 0w" 0 H4 OW14 = A n0 DP3

cc 0 u 0 u 0 UM uU ue U

147

0

L n r o U
.0U4 C) t"V L

N~ %O M % - E4

r- r-'-4 N -I

H -=AO'C) 0 N- - 0

*q CQ L- PC C-4 c -

E- E-4f) vC N,0
W.' zr- CAL V--

M H E"--
0A, (D tV n r- % 0 w If-.

HH)N N0C r, 0 *CU b--4 I

cz~ tE'm H0 a a
co~ m '- qV .- t -

U) M 0.0 wH r0 P -
z 90 -H - ! E4 wm4 -H M %*D

% * b1 .102 tAO' E-4 C-4 M 0f - r

tm 0 c64: wwtC H 1- H0 ~
0 0 w 0) U0 m = f- M * 0 1- H

C> 0V =0C L) C) ~c 0 At --t Nt
o f M re -O M = E ci M0~ M~ 4 H Do C>

hd H4 N). * N N0-t=I- kc) ci---t 01C 0

E-' Z ko C:)/" E- 0c E

r-w H= 9 i0o ac" (NNNNN4 e4I 000m E! i0 I4w14wE4=wwmm ao I

148

C)

CN %VCN

Lnc

0 '-

9-Z F-4

PC PC o c~ -at

V7 0 0

P- U + oteY
f-' m U0 t)I -- t -

1,4 lE&. % c -
9- -4 En' itoC En Co ~ '0

~~- * * * * -O -- t E- 0C/O
H 4Z CY OOOZ LP tni - ~en 0 i- 1-4 1- 1 fn 6uac IZ lk-. % in.~ U:) E-/4 H -f- Lo E- Z0 HH b

rz M> a 0~- OZ - = - M-C WU~ c, a 0C z- F t m

me) z - 0le F4 " " C nF
V4 00 0'J = 000:0 -l

0,- n o ub4 Wf

149

APPENDIX C

This appendix describes data collection using the IBM System

Management Facility (SMF) as it is implemented on the Amdahl 470/V6

at Texas A&M University. The basic flow of information to SMF is

described, and the particular SMF records which were used in this

study are detailed.

SMF is an optional feature of the IBM System 360/370 operating

systems that can be selected at system generation (SYSGEN) time. SMF

collects system, job management, and data management information, and

can be linked to user-written routines which can monitor the opera-

tion of jobs or job steps [47]. The information is collected for use

by management and systems analysts in billing customers or evaluating

system usage.

There is a variety of types of information collected by SMF. They

include

(a) accounting information such as CPU time and device and storage

utilization;

(b) data set activity such as a count of block transfer requests

(EXCPs) and the particular user of the data set;

(c) Volume information such as the space available on direct

access volumes and error statistics on tape volumes;

(d) system use information such as system wait time and I/O

150

configuration.

The type of data which is collected can be modified by the operator

at each initial program load [IPL]. For example, data set activity is

not presently collected at Texas A&M University.

There are a number of different records written by SMF. The

original manual [47] listed thirty-one such records. Depending upon the

system configuration, some additional records may be added. For exam-

ple, a HASP purge record reflecting each job's characteristics as

viewed by the spooling program and a record monitoring the activity

of the WYLBUR/370 system have been added to the collection of SMF

records used at Texas A&M University.

The various SMF records are written to the primary SMF data

set (SYSI.MANX) at critical points in the lifetime of a job. For

example, the job termination record is written whenever the job is

terminated either normally or abnormally, and data set information is

recorded whenever a data set opened by a user program is scratched,

renamed, closed or processed by end-of-volume (EOV). If SYSI.MANX

is defined on a direct-access device, as it is at Texas A&M University,

an additional SMF data set, SYS1.MANY, is also defined. Data is

recorded on SYS1.MANX until its defined extent is reached. At that

time, recording is switched to SYS1.MANY, and SYS1.MANX is copied to

a dump data set (magnetic tape). Periodically, the dump data ets

are merged to provide a complete record of system activity over some

period of time (i.e. one month).

The monthly SMF files provide a rich source of resource demand

151

information which can be used for workload characterization studies.
The particular SMF records which were used in this study are detailed
in the following tables. They are included here not only for complete-
ness, but also to point out the wide range of workload descriptors
which is available, at least on IBM compatible equipment, without
recourse to monitor data.

152

Table C.l Type 4 (Step End) Record [47]

Decimal Displacement Field Size Contents

0 1 Reserved (zero)
1 1 Record type (4)
2 4 Time of end of step
6 4 Date of end of step

10 2 System identification
12 2 System model identifier
14 8 Job name
22 4 Reader start time
26 4 Reader start date
30 8 User identification
38 1 Step number
39 4 Step initiation time
43 4 Step initiation date
47 4 Number of card image

records in input data set
51 2 Step completion code
53 1 Step priority
54 8 Program name
62 8 Name of executed step
70 2 Region size in heirarchyO
72 2 Region size in heirarchyl
74 4 Storage used in heirarchy 0
78 4 Storage used in heirarchy l
82 1 Storage protect key
83 3 Reserved
86 4 Device allocation time
90 4 Problem program load time
94 8 Reserved

*102 variable Devices used by step

variable 1 Total length of next fields
variable 3 Step CPU time
variable 1 No. of accounting fields
variable variable Accounting fields

* - Bytes 0 and 1 contain the length of the field. For each

assigned device there is an eight byte field giving the device class,
unit type, channel and unit address, and a count of the EXCPs issued
for the device.

153

Table C.2 Type 5 (Job Termination) Record [47]

Decimal Displacement Field Size Contents

0 1 Reserved (zero)
1 1 Record type (5)
2 4 Time of end of job
6 4 Date of end of job

10 2 System identification
12 2 System model identifier
14 8 Job name
22 4 Reader start time
26 4 Reader start date
30 8 User identification
38 1 Number of steps in job
39 4 Job initation time
43 4 Job initiation date
47 4 Number of card images

in input data set
51 2 Job completion code
53 1 Job priority
54 4 Reader stop time
58 4 Reader stop date
62 1 Job termination indicator
63 5 Output class indicator
68 1 Checkpoint/restart

indicator
69 1 Reader device class
70 1 Reader unit type
71 1 Job input class
72 1 Storage protect key
73 19 Reserved
92 1 Length of rest of record
93 20 Programmer's name
113 3 CPU time for job
116 1 Number of accounting fields
117 variable Accounting fields

I.I

154

Table C.3 Type 26 (HASP Purge) Record [47]

Decimal Displacement Field Size Contents

0 1 Reserved (zero)
1 1 Record type (26)
2 4 Time record copied
6 4 Date record copied

10 2 System identification
12 2 System model identification
14 8 Job name
22 4 Reader start time
26 4 Reader start date
30 8 User identification
38 4 Reserved
42 2 Subsystem identification (2)
44 2 Section indicator
46 2 Descriptor section length
48 3 Reserved
51 1 Job information
52 4 HASP assigned job number
56 8 Job name
64 20 Programmer's name
84 1 Message class
85 1 Job class
86 2 Execution selection priority
88 2 Output selection priority
90 2 Input route code
92 8 Logical input device name

100 4 Programmer's account number
104 4 Programmer's box number
108 4 Estimated execution time
112 4 Estimated output lines
116 4 Estimated punched output
120 4 Default output form number
124 2 Print copy count
126 2 Lines per page
128 2 Print route code
130 2 Punch route code
132 2 Events section length
134 2 Reserved
136 4 Reader stop time
140 4 Reader stop date
144 16 Reserved
160 4 Execution start time
164 4 Execution start date
168 4 Execution stop time
172 4 Execution stop date
176 4 Output start time

155

Table C.3 continued

Decimal Displacement Field Size Contents

180 4 Output start date
184 4 Output stop time
188 4 Output stop date
192 2 Actuals section length
194 2 Reserved
196 4 Number of input cards
200 4 Generated output lines
204 4 Generated punched output
208 4 Reserved
212 4 Printed lines
216 4 Printed pages
220 4 Punched cards
224 2 Accounting identification
226 1 Job execution level
227 1 Local flags
228 2 Region in 64K units
230 1 Max disc requests in any step
231 1 Max tape 7 requests in any step
232 1 Max tape 9 requests in any step
233 1 Customer group data
234 4 Job selection priority
238 4 Accumulated customer time
242 4 Estimated I/O time
246 1 Print train mounts
247 1 Forms mounts
248 1 Accumulated tape mounts
249 1 Accumulated disc mounts
250 4 CPU time (.01 sec)
254 4 Charge calculation
258 4 I/O time (.01 sec)
262 4 Total pages in
266 4 Total pages out
270 1 Cancel rerun count
271 2 Cancel rerun explanations
273 4 CPU time lost on reruns
277 4 Memory charges lost on reruns
281 4 1/0 time lost on reruns
285 16 Reserved

156

APPENDIX D

This appendix describes the two synthetic jobs designed as a part

of this study. The first job was developed to emulate the resource

demands of Autobatch cluster 4 (table 6.5(p.91)). The resource descrip-

tor set used to characterize the demands of Autobatch jobs contained

only three elements hence the synthetic job is quite simple. The second

job was designed to emulate the resource demands of Batch cluster 6 (ta-

ble 6.10(p.103)). The expanded resource descriptor set used to charac-

terize the Batch jobs necessitates a more complex synthetic job.

The synthetic job designed for Autobatch cluster 4 is designed

to allow the user to specify indirectly the number of lines printed and

the total CPU time used by setting two parameters: NRLIN and NITER.

The appropriate settings for these parameters may be determined using

predictor equations established in section 6.7. A loop control

parameter LIMIT = Maximum {NRLIN, NITER) is first calculated. The main

loop is then executed a total of LIMIT times. The first NRLIN times

through the loop, an output line is produced. Other actions accom-

plished each time through the loop include calculating two pseudo-

random numbers using a multiplicative congruential scheme and perform-

ing some simple calculations on the second of these two generated

numbers. The particular implementation of the job used in this study

(WATFIV) is shown in figure D.l.

157

The synthetic job designed for Batch cluster 6 is somewhat more

complex than the one designed for Autobatch clustpr 4. Four parameters:

NITER, NOUT, NTAP, and NDIS are specified to control the resource

usage. NITER controls the number of times the "compute" loop is

executed, NOUT controls how many lines of output are produced, NTAP

controls how many records are read from a tape file, and NDIS controls

how many records are read from a disk file.

The first task accomplished is to establish the loop control

parameter LIMIT = Maximum {NITER, NOUT, NTAP, NDIS). Within the main

loop a pseudo-random number is produced. In addition, the first NOUT

times through the loop a line is output; the first NTAP times through

the loop a record is read from the tape file; the first NDIS times

through the loop a record is read from the disk file; and the first

NITER times through the loop a compute routine is invoked. The compute

routine involves filling two 5x5 matrices with random numbers and then

calling a routine to multiply the two matrices to form a third 5x5

product matrix. The appropriate settings for the parameters to produce

a given demand pattern can be determined from predictor equations

established in section 6.7. The particular implementation of the job

used in this study (PL/I) is shown in figure D.2.

1.I
* -r -!

158

P44N

Ole-1

Ho
64%0

In -

C-4 ft a Q

I U

cn 0 nf
1.4 0 or % t

4.C .1 c N c 0 09
w ca z 0, Al

mC it H4 1-4 r
H In

E- to a -4 E-
2v LH 0 ~

-0 I-I .4 -004M 14 g . w1- HOH Hl V-

0- t, - *14' ac b., N -I
m ~ 1-4 n w x 0 rl * '

s0E H fC-,) z me N M! wz 4t %
H I- n 03b Ena 4 0 %r w- &

(4 0 1-4 .. p- 4 m w " * +.4

4- .4- C4 m i old0 %- at O Ix9:w 04 0

W4~ H0 X M F4- a ~ ap d4 LI)a I H a

ti 3F4 c - IX P4H.~ 321 mez i C a H, m e w .

0

5~~ 0 . t), 'fA..

LA-

159

U In 6-i w. F-4- H i

L) zM n 0 0 N m F4 09 a Eh04 cz m

Hj .UOld m 9- 6H MM00 tf 0Z900 U U U U
Z: -4 N 2 H b; w P 0 11 11 E-4 W N 0 00 a0

4- . 0 a MgoowV)U m 2im cc 05.4 n M 0 m 44m c U jj0

:a w.u14o 0 z - H. b.4~ m o x0 - mO b-i H HI4J

0 E adOJhI4 Ar dig ~h 0 M 06~ H H h PL bt. w P4f H 1- *

1.4 mH~ 6-a 0 w ~ H 0 e c1 C K$. o CL . b

0.. IrV. bwD . 31463ilwtmv af4 4 oti -

CL, k W16

160

u

c ct M) 04 1 w
U % u' . 0 aZ a S

C,0 0==0U in:E-

W.b.b Lf 0 ===00w W: w C w mb.

H 1-4 b< 4 . O...--,4 ii - Hto00C -

- PL. Z Z Z M w w = 0~ WI V-4=
W. LO -4 H- H- C-L 0C M.f 9-4 P2 I4Od w ..

C. % 9% M% at nt A -Q

w ~ ~ ~ U ~ b~ 94U~U- Ad n0wm U"b zt - 0V

C' reOo CzZ--4 J9-4 I-40- -4 w
w pat 0 . 0WMW - L

.-) ". " - .AT4 W1
0. 40404 t n Ct t I A= 0 h

0cc.O.a 60C 1nC f 11 c14M M . -
CLd eCZi ti a0t40t. r 5 3T

DOwza oE4mE 30)o n=4

161

u F-

w. .. 0 0 nE4x ll

oll 0= Hw a . 2o 2n
U2A uwE r 20 ~- 00

10 he 0 -4 m 3CH -4 4a

(A~ I-~f z F- Cc Z t

W,~ OIO4 KH-4- = W w-
-C E-4 u tm %W "

21-4 ZNO 0 z 0 0-4 it 7 -
>4 0NH m Z M. Ino - C-ZO - H-

OW O -Z a .L'~-E - a ~ *0met %M P

Z 1.44 NO 0 2 2c OC s- = =zw
go a aw = 0 m F' C-4 M .. OI4I 11I % - C=

= H F- &.JVN. utA cnb n -C., II . IN r:
f-4g m 6- r~ [-4 mw . % = 1- O

O.no W W FAZ E -' - ~ ',J ' = W2 v0 4C w a 4
Do m .H4CfWV =. -41 I r-. C- r-0 P3.v-
m 024 Oo-.O m vg AA- ON 11w n--d C

0. if a,' =. En U 0o-
n f -4 V -4- CM W " -. o w- 0 " 9

be4 W UIn 2NU 0 1-4 c Cl 0 = W. W CI i" 0

1-4 CL z0O4-m44 0 0 ac ~U F v--
at m0 = U) 0 3r N

4JJ M ~F- 00 0
r_ 44 ~4 C -C 0
0 N. OA Ec -

C"

C-

16?

*: E -4 4.

C- 4
00 C

-w * C.-0 z N

ca 0 E- 0 Q. E

-. 00 $~-4

-. 00 -- 0 0

F- % P' tn 4 0 -4 Z CC-nL
D1-4 0- 11 4-4 P" m m 4%

0 vI Z~t -'

m0 0-. 400 op u t

w O-ICU0 C mP Z 1-4~ *.
00 0z)0 tz t me 11 11z p

A* wE . on c, mZ cz
C)mP.c 14z = =o -

w.i r- m m z r c o - oc r

0
u

C'J

163

VITA

Wayne Thomas Graybeal was born to Stanley R. and Viola S. Graybeal

on June 2, 1944 in Nucla, Colorado. He obtained the Bachelor of Science

degree with a major in Mathematics from the University of Oklahoma in

1969. In 1970, he was awarded the Master of Arts degree with a major

in Mathematics from the University of Arizona.

He enlisted in the United States Air Force in June, 1962, and

has served continuously since that time. He was commissioned in May,

1969. His mcst recent assignments have been as a Space Object Identi-

fication Analyst, 131h Missile Warning Squadron, Clear AFS, Alaska

(1970-71); Instructor, Course 30ZR2025B, USAFSAAS, Keesler AFB, Mis-

sissippi (1971-74); and Instructor/Assistant Professor, Department

of Mathematical Sciences, U.S. Air Force Academy, Colorado (1974-1976).

Mr. Graybeal was married to Annie Elizabeth Pilcher on April 10,

1964. Three daughters (Shawn - 1965, Sandra - 1968, Susan - 1972)

were born to this union.

Mr. Graybeal's permanent mailing address is:

P.O. Box 94

Nucla, Colorado 81424

The typist for this dissertation was Mrs. Annie E. Graybeal.

-DATE

FILMED

